Antimicrobial Antimicrobial activity of Bacillus species isolated from Yemeni soils against some human pathogens

Main Article Content

Nesrain A. Al-Mekhlafi
Kholoud G. Badi
Roua A. Al-Refai
Sara M. Al-bana’a

Abstract

Bacillus species represent one of the most dominant soil bacteria and are capable of producing diverse metabolites with antimicrobial properties. This study aimed to isolate Bacillus spp. from Yemeni soils and evaluate their antimicrobial activity. Thirty soil samples were collected, and the isolates were characterized using phenotypic and biochemical tests. Their antimicrobial potential was assessed against Staphylococcus aureus, Escherichia coli, Pseudomonas sp., Salmonella sp., and Candida albicans using agar disc and well diffusion methods. In agar disc assays, the strongest inhibitory effects were observed against Salmonella sp. (13–32.5 mm), followed by E. coli (13–25.4 mm), C. albicans (10–18.5 mm), and S. aureus (10–15.5 mm). Five isolates exhibited antibacterial activity against Salmonella sp. in well diffusion assay. These results highlight the significant antimicrobial potential of Bacillus isolates derived from Yemeni soils. Further studies are recommended to identify bioactive metabolites and explore their suitability for the development of novel therapeutic agents.

Downloads

Download data is not yet available.

Article Details

How to Cite
Al-Mekhlafi, N. A., Badi, K. G., Al-Refai, R. A., & Al-bana’a, S. M. (2026). Antimicrobial Antimicrobial activity of Bacillus species isolated from Yemeni soils against some human pathogens. Sana’a University Journal of Applied Sciences and Technology, 4(1), 1520–1527. https://doi.org/10.59628/jast.v4i1.2137
Section
Article

References

M. Youcef- Ali, et al., “Antifungal activity and bioactive co pounds produced by Bacillus mojavensis and Bacillus subtilis,” Afr. J. Microbiol. Res. 8(6), 476-484 (2014). https://doi:10.5897/AJMR2013.6327.

M. Calvin, and M.D. Kunin, “Resistance to antimicrobial drugs a worldwide calamity,” Ann. Intern. Med. 118, 557-561(1993).

B.S.F. Bazzaz, M. Khajehkaramadin, and H.R. Shokooheizadeh, “In vitro antibacterial activity of Rheum ribes extract obtained from various plant parts against clinical isolates of Gram-negative pathogens,” Ir. J. Pharm. Res. 2, 87-91 (2005). https://doi.org/10.22037/ijpr.2010.621.

H. Mehrgan, F. Mojab, S. Pakdaman and M. Poursaeed, “Antibacterial activity of Thymus pubescens methanolic extract,” Ir. J. Pharm. Res. 7, 291-295 (2008).

S. Emami, et al., “2-Hydroxyphenacyl azoles and related azolium derivatives as antifungal agents,” Bioorg. Med. Chem. Lett. 18, 141-146 (2008). https://doi.org/10.1016/j.bmcl.2007.10.111.

A. Shafiee, et al., “Synthesis and in-vitro antibacterial activity of N-piperazinyl quinolone derivatives with 5-chloro-2-thienyl group,” DARU. 16 (3), 189-195 (2008).

C. Imada, N. Koseki, M. Kamata, T. Kobayashi, and N. Hamada-Sato, “Isolation and characterization of antibacterial substances produced by marine actinomycetes in the presence of seawater,” Actinomycetol. 21(1), 27-31 (2007). https://doi.10.3209/saj.SAJ 210104.

T. Stein, “Bacillus subtilis antibiotics: structures, syntheses and specific functions,” Mol. Microbiol. 56, 845-857 (2005). https://doi.10.1111/j.1365-2958.2005.04587.x.

A.I. Grosu, O.A. Sicuia, A. C. DobreVoaideş, and C.P. Cornea, “Evaluation of some Bacillus spp. Strains for the Biocontrol of Fusarium graminearum and F. culmorum in Wheat,” Agric. Agric. Sci. Procedia. 6, 559–566 (2015). https://doi:10.1016/j.aaspro.2015.08.085.

D. Miljaković, J. Marinković, and S. Balešević-Tubić, “The significance of Bacillus spp. in disease suppression and growth promotion of field and vegetable crops,” Microorganisms, 8(7), 1–19 (2020). https://doi:10.3390/microorganisms8071037.

A. K. Saxena, M. Kumar, H. Chakdar, N. Anuroopa, and D. J. Bagyaraj, “Bacillus species in soil as a natural resource for plant health and nutrition,” J. Appl. Microbiol. 128, 1583–1594 (2020). https://doi: 10.1111/jam.14506.

C.N. Chilcott, and P.J. Wigley, “Isolation and toxicity of Bacillus thuringiensis from soil and insect habitats in New Zealand,” J. Invertebr. Pathol. 61 (3), 244-247 (1993). https://doi.org/10.1006/jipa.1993.1047.

A. Gajbhiye, A.R. Rai, S.U. Meshram, and A.B. Dongre, “Isolation, evaluation and characterization of Bacillus subtilis from cotton rhizospheric soil with biocontrol activity against Fusarium oxysporum,” World J. Microbiol. Biotechnol. 26 (7), 1187–1194 (2010). https://doi.10.1007/s11274-009-0287-9.

Sneath, P.H.A. et al., “Bergey’s Manual of Systematic Bacteriology, Volume 2, Williams and Wilkins, A Waverly company, (1984), pp. 1104–1140.

B. Tepe, E. Donmez, M. Unlu, F. Candan, D. Daferera, and V. Unlu, “Antimicrobial and antioxidative activities of the essential oils and methanol extracts of Salvia cryptantha and Salvia multicaulis,” J. Food. Chem. 84 (4), 519-525 (2004). https://doi.10.1016/S03088146(03)00267-X.

J.A. Reinheimer, M.R. Demkov, and M.C. Condioti, “Inhibition of coliform bacteria by lactic cultures,” Aust. J. Dairy Technol. 45 (1), 5–9 (1990).

M. Amin, Z. Rakhisi, A.Z. Ahmady, “Isolation and identification of Bacillus species from soil and evaluation of their antibacterial properties,” Avicenna J Clin. Microb Infec. 2(1), e23233 (2015). https://doi.10.17795/ajcmi-23233.

S. Dangol, D. Lammichane, R. Baral, P. Khadka, B. Sharma, and A. Basnet, “Antimicrobial activity of Bacillus species isolated from soil against human pathogens,” IJSR. 8(8), 1250-1255 (2024). https://doi.10.21275/ART2020411.

M. Koilybayeva, et al., “Molecular characterization of some Bacillus species from vegetables and evaluation of their antimicrobial and antibiotic potency,” Molecules. 28 (7), 3210 (2023). https://doi.org/10.3390/molecules28073210.

M. Yilmaz, H. Soran, and Y. Beyatli, “Antimicrobial activities of some Bacillus spp. strains isolated from the soil,” Microbiol. Res. 161(2), 127–131(2006). https://doi.org/10.1016/j.micres.2005. 07.001.

M. Abdulkadir, and S. Waliyu, “Screening and isolation of the soil bacteria for ability to produce antibiotics,” Eur. J. Appl. Sci. 4 (5), 211-215 (2012). https://doi10.5829/idosi.ejas.2012.4.5.2011.

T. J. Hossain, “Methods for screening and evaluation of antimicrobial activity: A review of protocols, advantages, and limitations,” Eur. J. Microbiol. Immunol. 14 (20), 97–115 (2024). https://doi.10.1556/1886. 2024.00035.

S. Magdalena, Anggelia, Y. Yogiara, “Characterization of antibacterial activity produced by Bacillus spp. isolated from honey and bee-associated products against foodborne pathogens,” Biotechnol. 17 (2), 51-59 (2020). https://doi. 10.13057/biofar/c170201.

E. Drenkard, “Antimicrobial resistance of Pseudomonas aeruginosa biofilms,” Microbes Infect. 5, 1213–1219 (2003). https://doi.org/10.1016/j.micinf.2003.08.009.

E.B.M. Breidenstein, C.de-la. Fuente-Núñez, and R.E.W. Hancock, “Pseudomonas aeruginosa: all roads lead to resistance,” Trends in Microbiology. 19(8), 419-426 (2011). https://doi.org/ 10.1016/j.tim.2011.04.005.

F. Prestinaci, P. Pezzotti, and A. Pantosti, “Antimicrobial resistance: a global multi- faceted phenomenon,” Pathog. Glob. Health. 109(7), 309–318 (2015). https://doi:10.1179/2047773215Y.0000000030.

T.P. Anand, A.W. Bhat, Y.S. Shouche, U. Roy, J. Siddharth, and S.P. Sarma, “Antimicrobial activity of marine bacteria associated with sponges from the waters off the coast of South East India,” Microbiol Res.161(3), 252–262 (2006). https://doi.org/10.1016/j.micres.2005.09.002.

V. Tarhriz, S. Eyvazi, E. Shakeri, M.S. Hejazi, and A. Dilmaghani, “Antibacterial and antifungal activity of novel freshwater bacterium Tabrizicola aquatica as a prominent natural antibiotic available in Qurugol Lake,” Pharm. Sci. 26(1), 88–92 (2020).https://doi:10.34172/PS.2019.5.

M.G. Donadu, et al., “Colombian essential oil of Ruta graveolens against nosocomial antifungal resistant Candida strains,” J Fungi, 7(5), 383 (2021). https://doi:10.3390/jof 7050383. https:// doi: 10.3390/jof7050383.

K. Hosseini, S. Jasori, A. Delazar, P. Asgharian, and V.Tarhriz, “Phytochemical analysis and anticancer activity of Falcaria vulgaris Bernh growing in Moghan plain, northwest of Iran,” BMC Complement Med Ther. 21(1),1–10 (2021). https://doi:10. 1186/s12906 -021-03464-2.

V. Tarhriz, A. Yari Khosroushahi, L. E. Ghasor, B. Elyasifar, and A. Dilmaghani, “Effect of essential oils of Zingiber officinale, Cinnamomum verum, Trachyspermum ammi, Cuminum cyminum, and Carum carvi on bacteria inducing clonal dysbiosis in vitro,” J Mazandaran Univ Med Sci. 31(201), 16–27 (2021). https://doi:20.1001.1.17359260. 1400.31.201.6.4.

Similar Articles

1 2 3 4 5 > >> 

You may also start an advanced similarity search for this article.