Existence, Uniqueness, and Stability Analysis of the Fractional-Order Burke-Shaw Model with ABC-Fractional Derivativ

https://doi.org/10.59628/jast.v3i2.1470

المؤلفون

  • Abdulwasea Alkhazzan School of Mathematics and statistic, Northwestern Polytechnical University, Shannxi, 710072 Xi’an, P. R. China
  • Ibrahim. G. H. Loqman Department of Physics, Faculty of Science, Sana’a University, Sana’a, Yemen
  • Sayed Murad Ali Shah Department of Mathematics, Faculty of Science, Sana’a University, Sana’a, Yemen
  • Amatalraheem Alkhazzan School of Commerce and Economics, Xidian University, Xi’an 710071, PR China

الكلمات المفتاحية:

ABC and ABR fractional derivative، ABC fractional integral، fractional Burke-Shaw system، Lipschitz condition، Hyers-Ulam stability

الملخص

The Burke-Shaw model (BSM), which is grounded in the Lorenz system, is essential in various areas of physics and engineering. In this paper, we investigate the application of a fractional derivative with a Mittag Leffler (M-L) type kernel to address the existence, uniqueness, and Hyers-Ulam stability (HUS) of solutions for the fractional-order BSM. We utilize the ABC-fractional derivative, developed by Atangana and Baleanu, as it offers a more adaptable approach suitable for a diverse array of real-world applications. To demonstrate the existence and uniqueness of solutions, as well as HUS, we introduce a set of necessary conditions that ensure the results presented in this study.

التنزيلات

بيانات التنزيل غير متوفرة بعد.

منشور

2025-04-30

كيفية الاقتباس

Alkhazzan, A., Loqman, I. G. H., Shah, S. M. A., & Alkhazzan, A. (2025). Existence, Uniqueness, and Stability Analysis of the Fractional-Order Burke-Shaw Model with ABC-Fractional Derivativ. مجلة جامعة صنعاء للعلوم التطبيقية والتكنولوجيا, 3(2), 690–697. https://doi.org/10.59628/jast.v3i2.1470

المؤلفات المشابهة

1 2 3 > >> 

يمكنك أيضاً إبدأ بحثاً متقدماً عن المشابهات لهذا المؤلَّف.