Survey On Intelligent Anomaly Detection Techniques In IOT Security
Main Article Content
Abstract
The rapid development of various advanced technologies, including the Internet of Things (IoT), coupled with users’ heavy reliance on technology in various aspects of their daily lives, has led to an increase in the number of devices connected to the Internet. As a result of this rapid growth, the amount of data generated will increase significantly, as the Internet of Things covers many areas, from industrial and healthcare sectors to smart cities and smart homes. However, many challenges, attacks, vulnerabilities, and various anomalies related to the security of IoT devices arise, negatively impacting individuals and organizations. Several anomaly detection techniques have emerged, including machine learning and deep learning, which in turn detect anomalies. This enhances the security, integrity, reliability, and effectiveness of IoT systems. This paper provides a comprehensive survey of peer-reviewed articles from 2018 up to the present that focus on machine learning and deep learning in anomaly detection and attacks on various layers of the Internet of Things architecture. The survey results provide potential insights and recommendations for future research endeavors.
Downloads
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
References
N. A. Al-Shaibany, T. A. B. Al-Sofi, G. H. Al Gaphari, + Nagi, and A. Al-Shaibany, “A Model for Enhancing the Information Security Management Systems in Yemen Banks ARTICLE INFO Keywords,” 2023. [Online]. Available: https://jpurnals.su.edu.ye/jast
C. J. Chandnani, V. Agarwal, S. C. Kulkarni, A. Aren, G. B. Amali, and K. Srinivasan, “A Physics Based Hyper Parameter Optimized Federated Multi-Layered Deep Learning Model For Intrusion Detection in IoT Networks,” IEEE Access, 2025, doi: 10.1109/ACCESS.2025.3535952.
P. L. S. Jayalaxmi, R. Saha, G. Kumar, M. Conti, and T. H. Kim, “Machine and Deep Learning Solutions for Intrusion Detection and Prevention in IoTs: A Survey,” IEEE Access, vol. 10, pp. 121173–121192, 2022, doi: 10.1109/ACCESS.2022.3220622.
M. Saied, S. Guirguis, and M. Madbouly, “A Comparative Study of Using Boosting-Based Machine Learning Algorithms for IoT Network Intrusion Detection,” International Journal of Computational Intelligence Systems, vol. 16, no. 1, Dec. 2023, doi: 10.1007/s44196-023-00355-x.
A. Ghaffari, N. Jelodari, S. pouralish, N. derakhshanfard, and B. Arasteh, “Securing internet of things using machine and deep learning methods: a survey,” Cluster Comput, vol. 27, no. 7, pp. 9065–9089, Oct. 2024, doi: 10.1007/s10586-024-04509-0.
M. A. Al-Hadi, G. H. Al-Gaphari, I. A. Al-Baltah, and F. B. Julian, “A Promising Smart Healthcare Monitoring Model based on Internet of Things and Deep Learning Techniques,” مجلة جامعة صنعاء للعلوم التطبيقية والتكنولوجيا, vol. 2, no. 2, pp. 147–153, May 2024, doi: 10.59628/jast.v2i2.811.
T. Al-Shurbaji et al., “Deep Learning-Based Intrusion Detection System For Detecting IoT Botnet Attacks: A Review,” IEEE Access, 2025, doi: 10.1109/ACCESS.2025.3526711.
E. Altulaihan, M. A. Almaiah, and A. Aljughaiman, “Anomaly Detection IDS for Detecting DoS Attacks in IoT Networks Based on Machine Learning Algorithms,” Sensors, vol. 24, no. 2, Jan. 2024, doi: 10.3390/s24020713.
M. Li, Y. Qiao, and B. Lee, “A Comparative Analysis of Single and Multi-view Deep Learning for Cybersecurity Anomaly Detection,” IEEE Access, 2025, doi: 10.1109/ACCESS.2025.3564066.
I. Ullah and Q. H. Mahmoud, “Design and Development of a Deep Learning-Based Model for Anomaly Detection in IoT Networks,” IEEE Access, vol. 9, pp. 103906–103926, 2021, doi: 10.1109/ACCESS.2021.3094024.
A. M. Almasabi, M. Khemakhem, F. E. Eassa, A. Ahmed Abi Sen, A. B. Alkhodre, and A. Harbaoui, “A Smart Framework to Detect Threats and Protect Data of IoT Based on Machine Learning,” IEEE Access, vol. 12, pp. 176833–176844, 2024, doi: 10.1109/ACCESS.2024.3498603.
A. A. Alzubaidi, “Systematic Literature Review for Detecting Intrusions in Unmanned Aerial Vehicles Using Machine and Deep Learning,” 2025, Institute of Electrical and Electronics Engineers Inc. doi: 10.1109/ACCESS.2025.3552329.
S. H. Mohammed et al., “A Review on the Evaluation of Feature Selection Using Machine Learning for Cyber-Attack Detection in Smart Grid,” IEEE Access, vol. 12, pp. 44023–44042, 2024, doi: 10.1109/ACCESS.2024.3370911.
K. S. Awaisi, Q. Ye, and S. Sampalli, “A Survey of Industrial AIoT: Opportunities, Challenges, and Directions,” IEEE Access, vol. 12, pp. 96946–96996, 2024, doi: 10.1109/ACCESS.2024.3426279.
S. F. Chevtchenko et al., “Anomaly Detection in Industrial Machinery Using IoT Devices and Machine Learning: A Systematic Mapping,” IEEE Access, vol. 11, pp. 128288–128305, 2023, doi: 10.1109/ACCESS.2023.3333242.
M. A. Khatun, S. F. Memon, C. Eising, and L. L. Dhirani, “Machine Learning for Healthcare-IoT Security: A Review and Risk Mitigation,” IEEE Access, vol. 11, pp. 145869–145896, 2023, doi: 10.1109/ACCESS.2023.3346320.
N. Mishra and S. Pandya, “Internet of Things Applications, Security Challenges, Attacks, Intrusion Detection, and Future Visions: A Systematic Review,” 2021, Institute of Electrical and Electronics Engineers Inc. doi: 10.1109/ACCESS.2021.3073408.
M. A. Al-Garadi, A. Mohamed, A. K. Al-Ali, X. Du, I. Ali, and M. Guizani, “A Survey of Machine and Deep Learning Methods for Internet of Things (IoT) Security,” IEEE Communications Surveys and Tutorials, vol. 22, no. 3, pp. 1646–1685, Jul. 2020, doi: 10.1109/COMST.2020.2988293.
S. H. Rafique, A. Abdallah, N. S. Musa, and T. Murugan, “Machine Learning and Deep Learning Techniques for Internet of Things Network Anomaly Detection—Current Research Trends,” Mar. 01, 2024, Multidisciplinary Digital Publishing Institute (MDPI). doi: 10.3390/s24061968.
K. K. Eren, K. Kucuk, F. Ozyurt, and O. H. Alhazmi, “Simple Yet Powerful: Machine Learning-Based IoT Intrusion System with Smart Preprocessing and Feature Generation Rivals Deep Learning,” IEEE Access, 2025, doi: 10.1109/ACCESS.2025.3547642.
M. M. Inuwa and R. Das, “A comparative analysis of various machine learning methods for anomaly detection in cyber attacks on IoT networks,” Internet of Things (Netherlands), vol. 26, Jul. 2024, doi: 10.1016/j.iot.2024.101162.
N. Sarwar, I. S. Bajwa, M. Z. Hussain, M. Ibrahim, and K. Saleem, “IoT Network Anomaly Detection in Smart Homes Using Machine Learning,” IEEE Access, vol. 11, pp. 119462–119480, 2023, doi: 10.1109/ACCESS.2023.3325929.
A. Houkan et al., “Enhancing Security in Industrial IoT Networks: Machine Learning Solutions for Feature Selection and Reduction,” IEEE Access, 2024, doi: 10.1109/ACCESS.2024.3481459.
T. Zhukabayeva, Z. Ahmad, A. Adamova, N. Karabayev, Y. Mardenov, and D. Satybaldina, “Penetration Testing and Machine Learning-Driven Cybersecurity Framework for IoT and Smart City Wireless Networks,” IEEE Access, 2025, doi: 10.1109/ACCESS.2025.3569965.
I. Ullah, A. Ullah, and M. Sajjad, “Towards a Hybrid Deep Learning Model for Anomalous Activities Detection in Internet of Things Networks,” Internet of Things, vol. 2, no. 3, pp. 428–448, Sep. 2021, doi: 10.3390/iot2030022.
M. Maaz, G. Ahmed, A. S. Al-Shamayleh, A. Akhunzada, S. Siddiqui, and A. H. Al-Ghushami, “Empowering IoT Resilience: Hybrid Deep Learning Techniques for Enhanced Security,” IEEE Access, 2024, doi: 10.1109/ACCESS.2024.3482005.
S. Vashi, J. Ram, J. Modi, S. Verma, and C. Prakash, “Internet of Things (IoT): A vision, architectural elements, and security issues,” in Proceedings of the International Conference on IoT in Social, Mobile, Analytics and Cloud, I-SMAC 2017, Institute of Electrical and Electronics Engineers Inc., Oct. 2017, pp. 492–496. doi: 10.1109/I-SMAC.2017.8058399.
M. Bilal, “A Review of Internet of Things Architecture, Technologies and Analysis Smartphone-based Attacks Against 3D printers.”
W. Kassab and K. A. Darabkh, “A–Z survey of Internet of Things: Architectures, protocols, applications, recent advances, future directions and recommendations,” Journal of Network and Computer Applications, vol. 163, Aug. 2020, doi: 10.1016/j.jnca.2020.102663.
F. Wortmann and K. Flüchter, “Internet of Things: Technology and Value Added,” Jun. 01, 2015, Gabler Verlag. doi: 10.1007/s12599-015-0383-3.
S. Bandyopadhyay, P. Balamuralidhar, and A. Pal, “Interoperation among IoT Standards,” Journal of ICT Standardization, vol. 1, no. 2, pp. 253–270, 2013, doi: 10.13052/jicts2245-800X.12a9.
S. N. Swamy, D. Jadhav, and N. Kulkarni, “Security threats in the application layer in IOT applications,” in Proceedings of the International Conference on IoT in Social, Mobile, Analytics and Cloud, I-SMAC 2017, Institute of Electrical and Electronics Engineers Inc., Oct. 2017, pp. 477–480. doi: 10.1109/I-SMAC.2017.8058395.
M. El Hanine, A. El-Yahyaoui, and R. Es-Sadaoui, “Three Layer IoT Architecture: Attacks and Security Mechanisms,” in Proceedings - 2024 11th International Conference on Future Internet of Things and Cloud, FiCloud 2024, Institute of Electrical and Electronics Engineers Inc., 2024, pp. 32–38. doi: 10.1109/FiCloud62933.2024.00014.
Y. Khan, M. B. M. Su’ud, M. M. Alam, S. F. Ahmad, N. A. Salim, and N. Khan, “Architectural Threats to Security and Privacy: A Challenge for Internet of Things (IoT) Applications,” Jan. 01, 2023, MDPI. doi: 10.3390/electronics12010088.
M. A. Obaidat, S. Obeidat, J. Holst, A. Al Hayajneh, and J. Brown, “A comprehensive and systematic survey on the internet of things: Security and privacy challenges, security frameworks, enabling technologies, threats, vulnerabilities and countermeasures,” Computers, vol. 9, no. 2, Jun. 2020, doi: 10.3390/computers9020044.
G. Sharma, S. Vidalis, N. Anand, C. Menon, and S. Kumar, “A survey on layer-wise security attacks in iot: Attacks, countermeasures, and open-issues,” Oct. 01, 2021, MDPI. doi: 10.3390/electronics10192365.
S. Deep, X. Zheng, A. Jolfaei, D. Yu, P. Ostovari, and A. K. Bashir, “A survey of security and privacy issues in the Internet of Things from the layered context,” Feb. 2020, [Online]. Available: http://arxiv.org/abs/1903.00846
A. A. Alsabri and M. A. Al-Hadi, “A Hybrid CNN-BLSTM Model for Phishing Attack Detection Using Deep Learning to Strengthen Internet Security,” مجلة جامعة صنعاء للعلوم التطبيقية والتكنولوجيا, vol. 3, no. 4, pp. 964–972, Aug. 2025, doi: 10.59628/jast.v3i4.1822.
H. Mrabet, S. Belguith, A. Alhomoud, and A. Jemai, “A survey of IoT security based on a layered architecture of sensing and data analysis,” Jul. 01, 2020, MDPI AG. doi: 10.3390/s20133625.
D. Singh, G. Tripathi, and A. Jara, “Secure layers based architecture for Internet of Things,” in IEEE World Forum on Internet of Things, WF-IoT 2015 - Proceedings, Institute of Electrical and Electronics Engineers Inc., 2015, pp. 321–326. doi: 10.1109/WF-IoT.2015.7389074.
A. N. Ozalp, Z. Albayrak, M. Cakmak, and E. Ozdogan, “Layer-based examination of cyber-attacks in IoT,” in HORA 2022 - 4th International Congress on Human-Computer Interaction, Optimization and Robotic Applications, Proceedings, Institute of Electrical and Electronics Engineers Inc., 2022. doi: 10.1109/HORA55278.2022.9800047.
P. K. Tiwari et al., “A Secure and Robust Machine Learning Model for Intrusion Detection in Internet of Vehicles,” IEEE Access, 2025, doi: 10.1109/ACCESS.2025.3532716.
A. Berguiga, A. Harchay, and A. Massaoudi, “HIDS-RPL: A Hybrid Deep Learning-Based Intrusion Detection System for RPL in Internet of Medical Thing Networks,” IEEE Access, 2025, doi: 10.1109/ACCESS.2025.3545918.
C. Hazman, A. Guezzaz, S. Benkirane, and M. Azrour, “Enhanced IDS with Deep Learning for IoT-Based Smart Cities Security,” Tsinghua Sci Technol, vol. 29, no. 4, pp. 929–947, Aug. 2024, doi: 10.26599/TST.2023.9010033.
S. Sadhwani, U. K. Modi, R. Muthalagu, and P. M. Pawar, “SmartSentry: Cyber Threat Intelligence in Industrial IoT,” IEEE Access, vol. 12, pp. 34720–34740, 2024, doi: 10.1109/ACCESS.2024.3371996.
P. Russell, M. A. Elsayed, B. Nandy, N. Seddigh, and N. Zincir-Heywood, “On the Fence: Anomaly Detection in IoT Networks,” in Proceedings of IEEE/IFIP Network Operations and Management Symposium 2023, NOMS 2023, Institute of Electrical and Electronics Engineers Inc., 2023. doi: 10.1109/NOMS56928.2023.10154271.
A. Huc and D. Trcek, “Anomaly Detection in IoT Networks: From Architectures to Machine Learning Transparency,” IEEE Access, vol. 9, pp. 60607–60616, 2021, doi: 10.1109/ACCESS.2021.3073785.
S. Panja, S. Das, and A. Pal, “Assessing the Effectiveness of Anomaly Detection in IoT Data Streams with Machine Learning,” in Proceedings - 2024 4th International Conference on Computer, Communication, Control and Information Technology, C3IT 2024, Institute of Electrical and Electronics Engineers Inc., 2024. doi: 10.1109/C3IT60531.2024.10829458.
S. S. Hussain, M. F. A. Razak, and A. Firdaus, “Deep Learning Based Hybrid Analysis of Malware Detection and Classification: A Recent Review,” 2024, River Publishers. doi: 10.13052/jcsm2245-1439.1314.
“2+Breast+Cancer-Risk+Factors+and+Prediction+Using+Machine-Learning”.
S. Golestani and D. Makaroff, “Device-Specific Anomaly Detection Models for IoT Systems,” in 2024 IEEE Conference on Communications and Network Security, CNS 2024, Institute of Electrical and Electronics Engineers Inc., 2024. doi: 10.1109/CNS62487.2024.10735608.
M. Algabri, E. N. A. Abu Huliqah, M. Ghurab, A. A. G. Al-Khulaidi, and G. H. Al Gaphari, “Fake News Detection On Social Media:Review of Literature,” مجلة جامعة صنعاء للعلوم التطبيقية والتكنولوجيا, vol. 2, no. 1, pp. 7–15, Feb. 2024, doi: 10.59628/jast.v2i1.369.
G. Zachos, G. Mantas, K. Porfyrakis, J. M. C. S. Bastos, and J. Rodriguez, “Anomaly-Based Intrusion Detection for IoMT Networks: Design, Implementation, Dataset Generation and ML Algorithms Evaluation,” IEEE Access, 2025, doi: 10.1109/ACCESS.2025.3547572.
H. Hakami, M. Faheem, and M. Bashir Ahmad, “Machine Learning Techniques for Enhanced Intrusion Detection in IoT Security,” IEEE Access, vol. 13, pp. 31140–31158, 2025, doi: 10.1109/ACCESS.2025.3542227.
M. M. Aborokbah, “A Novel Intrusion Detection Model for Enhancing Security in Smart City,” IEEE Access, vol. 12, pp. 107431–107444, 2024, doi: 10.1109/ACCESS.2024.3438619.
M. F. Saiyedand and I. Al-Anbagi, “Deep Ensemble Learning With Pruning for DDoS Attack Detection in IoT Networks,” IEEE Transactions on Machine Learning in Communications and Networking, vol. 2, pp. 596–616, Apr. 2024, doi: 10.1109/tmlcn.2024.3395419.
U. Shahid, M. Zunnurain Hussain, M. Zulkifl Hasan, A. Haider, J. Ali, and J. Altaf, “Hybrid Intrusion Detection System for RPL IoT Networks Using Machine Learning and Deep Learning,” IEEE Access, vol. 12, pp. 113099–113112, 2024, doi: 10.1109/ACCESS.2024.3442529.
M. Ali, M. Shahroz, M. F. Mushtaq, S. Alfarhood, M. Safran, and I. Ashraf, “Hybrid Machine Learning Model for Efficient Botnet Attack Detection in IoT Environment,” IEEE Access, vol. 12, pp. 40682–40699, 2024, doi: 10.1109/ACCESS.2024.3376400.
H. Liao et al., “A Survey of Deep Learning Technologies for Intrusion Detection in Internet of Things,” IEEE Access, vol. 12, pp. 4745–4761, 2024, doi: 10.1109/ACCESS.2023.3349287.
M. M. Khan and M. Alkhathami, “Anomaly detection in IoT-based healthcare: machine learning for enhanced security,” Sci Rep, vol. 14, no. 1, Dec. 2024, doi: 10.1038/s41598-024-56126-x.
M. Aldossary, H. A. Alharbi, and C. Anwar Ul Hassan, “Internet of Things (IoT)-Enabled Machine Learning Models for Efficient Monitoring of Smart Agriculture,” IEEE Access, vol. 12, pp. 75718–75734, 2024, doi: 10.1109/ACCESS.2024.3404651.
D. Huang and A. Al-Hourani, “Physical Layer Spoof Detection and Authentication for IoT Devices Using Deep Learning Methods,” IEEE Transactions on Machine Learning in Communications and Networking, vol. 2, pp. 841–854, Jun. 2024, doi: 10.1109/tmlcn.2024.3417806.
A. Shahnejat Bushehri, A. Amirnia, A. Belkhiri, S. Keivanpour, F. G. De Magalhaes, and G. Nicolescu, “Deep Learning-Driven Anomaly Detection for Green IoT Edge Networks,” IEEE Transactions on Green Communications and Networking, vol. 8, no. 1, pp. 498–513, Mar. 2024, doi: 10.1109/TGCN.2023.3335342.
S. Duraibi and A. M. Alashjaee, “Enhancing Cyberattack Detection Using Dimensionality Reduction With Hybrid Deep Learning on Internet of Things Environment,” IEEE Access, vol. 12, pp. 84752–84762, 2024, doi: 10.1109/ACCESS.2024.3411612.