The Propagation properties of the average intensity evolution of Whittaker–Gaussian beams in oceanic turbulence

Main Article Content

N. Nossir
L. Dalil-Essakali
A. Belafhal

Abstract

This study investigates the propagation behavior of a class of general circular light beams (CiBs), known as Whittaker–Gaussian beams (WGBs), as they traverse oceanic turbulence by employing the Rytov approximation and diffraction integral formalism. Based on the derived analytical expression, numerical simulations were per- formed to evaluate the impact of oceanic turbulence on the axial intensity distribution of these circular beams. The results indicate that the beam intensity profile is significantly influenced by variations in its initial parameters, namely, the beam waist and wavelength, as well as by key oceanic turbulence parameters, including the rate of mean-square temperature dissipation, balance between temperature and salinity fluctuations, and rate of turbulent kinetic energy dissipation per unit mass. These findings offer deeper insights that can support the development and optimization of optical systems used in underwater communication, remote sensing, and imaging applications.

Downloads

Download data is not yet available.

Article Details

How to Cite
Nossir, N., Dalil-Essakali, L., & Belafhal, A. (2025). The Propagation properties of the average intensity evolution of Whittaker–Gaussian beams in oceanic turbulence. Sana’a University Journal of Applied Sciences and Technology, 3(6), 1419–1428. https://doi.org/10.59628/jast.v3i6.2334
Section
Article

References

He, S., Malomed, B. A., Mihalache, D., Peng, X., Yu, X., He, Y., & Deng, D. “Propagation dynamics of abruptly autofocusing circular Airy Gaussian vortex beams in the fractional Schrödinger equation”, Chaos Solitons Fractals, 142(1), 1-8, (2021). https://www.sciencedirect.com/science/article/abs/pii/S0960077920308626

Zhang, L., He, S., Peng, X., Huang, L., Yang, X., Wang, G., Liu, H., He, Y., & Deng, D. “Tightly focusing evolution of the auto-focusing linear polarized circular Pearcey Gaussian vortex beams”, Chaos Solitons Fractals, 143(1), 1-7, (2021). https://www.sciencedirect.com/science/article/abs/pii/S0960077920309991

Lin, Z., Wu, Y., Qiu, H., Fu, X., Chen, K., & Deng, D. “Propagation properties and radiation forces of the chirped Pearcey Gaussian vortex beam in a medium with a parabolic refractive index”, Commun. Nonlinear Sci. Numer. Simul., 94(1), 1-11, (2021). https://www.sciencedirect.com/science/article/abs/pii/S1007570420303877

Wu, Y., He, S., Wu, J., Lin, Z., Chen, L., Qiu, H., Liu, Y., Hong, S., Chen, K., Fu, X., Xu, C., He, Y., & Deng, D. “Autofocusing Pearcey-like vortex beam along a parabolic trajectory”, Chaos Solitons Fractals, 145(1), 1-6, (2021). https://www.sciencedirect.com/science/article/abs/pii/S0960077921001338

Nossir, N., Dalil-Essakali, L., & Belafhal, A. “Analytical study of flat-topped beam characterization using the thermal lens method in sample liquids”, Optik, 166(1), 323-337, (2018). https://www.sciencedirect.com/science/article/abs/pii/S0030402618305163

Nossir, N., Dalil-Essakali, L., & Belafhal, A. “Diffraction of Generalized Humbert-Gaussian beams by a helical axicon”, Opt. Quant. Electron., 53(1), 1-13, (2021). https://link.springer.com/article/10.1007/s11082-020-02662-5

Nossir, N., Dalil-Essakali, L., & Belafhal, A. “Introduction of Bessel higher-order cosh-Gaussian beam and its propagation through a paraxial ABCD optical system”, Opt. Quant. Electron., 55(1), 1-14, (2023). https://link.springer.com/article/10.1007/s11082-023-05409-0

Nossir, N., Dalil-Essakali, L., & Belafhal, A. “Propagation analysis of some doughnut lasers beams through a paraxial ABCD optical system”, Opt. Quant. Electron., 52(1), 1-16, (2020). https://link.springer.com/article/10.1007/s11082-020-02444-z

Andrews, L. C., & Phillips, R. L. “Laser Beam Propagation Through Random Medium”, SPIE Press, Bellingham, (1998).

Navidpour, S. M., Uysal, M., & Kavehrad, M. “BER performance of free-space optical transmission with spatial diversity”, IEEE Trans. Wirel. Commun., 6(8), 2813-2819, (2007). https://ieeexplore.ieee.org/document/4290022

Arnon, S. “Underwater optical wireless communication network”, Opt. Eng., 49(1), 1-10, (2010). https://ieeexplore.ieee.org/document/4290022

Han, P. “Lattice spectroscopy”, Opt. Lett., 34(9), 1303-1305, (2009). https://opg.optica.org/ol/abstract.cfm?uri=ol-34-9-1303

Kaushal, H., & Kaddoum, G. “Underwater optical wireless communication”, IEEE Access, 4, 1518-1547, (2016). https://ieeexplore.ieee.org/document/7450595

Wang, H., & Chanson, H. “Experimental study of turbulent fluctuations in hydraulic jumps”, J. Hydraul. Eng., 141(1), 1-10, (2015). https://ascelibrary.org/doi/10.1061/%28ASCE%29HY.1943-7900.0001010

Augustine, S. M., & Chetty, N. “Experimental verification of the turbulent effects on laser beam propagation in space”, Atmósfera, 27(1), 385-401, (2014). https://www.sciencedirect.com/science/article/pii/S0187623614700372

Chib, S., Dalil-Essakali, L., & Belafhal, A. “Comparative analysis of some Schell-model beams propagating through turbulent atmosphere”, Opt. Quant. Electron., 54(1), 1-17, (2022). https://link.springer.com/article/10.1007/s11082-022-03571-5

Nossir, N., Dalil-Essakali, L., & Belafhal, A. “Behavior of the central intensity of generalized Humbert-Gaussian beams against the atmospheric turbulence”, Opt. Quant. Electron., 53, 665-678, (2021). https://link.springer.com/article/10.1007/s11082-021-03316-w

Dalil-Essakali, L., Nossir, N., & Belafhal, A. “Axial intensity of Bessel higher-order cosh-Gaussian beam propagating in a turbulent atmosphere”, Opt. Quant. Electron., 56(1), 1-15, (2023). https://link.springer.com/article/10.1007/s11082-023-05782-w

Ebrahim, A. A. A., Swillam, M. A., & Belafhal, A. “Atmospheric turbulent effects on the propagation properties of a general model vortex higher-order cosh-Gaussian beam”, Opt. Quant. Electron., 55(1), 1-13, (2023). https://link.springer.com/article/10.1007/s11082-023-04576-4

Nossir, N., Dalil-Essakali, L., & Belafhal, A. “Maritime turbulence effect on the axis light intensity of a Bessel higher-order cosh-Gaussian laser beam”, Opt. Quant. Electron., 56, 364-378, (2024). https://link.springer.com/article/10.1007/s11082-023-06052-5

Benzehoua, H., & Belafhal, A. “The Effects of Atmospheric Turbulence on the Spectral Changes of Diffracted Pulsed Hollow Higher-Order Cosh-Gaussian Beam”, Opt. Quant. Electron., 50(1), 973-982, (2023). https://link.springer.com/article/10.1007/s11082-023-05205-w

Fu, W., & Zhang, H. “Propagation properties of partially coherent radially polarized doughnut beam in turbulent ocean”, Opt. Commun., 304(1), 11-18, (2013). https://www.sciencedirect.com/science/article/abs/pii/S003040181300343X

Zhang, J., Xie, J., & Deng, D. “Second-order statistics of a partially coherent electromagnetic rotating elliptical Gaussian vortex beam through non-Kolmogorov turbulence”, Opt. Express, 26(21), 21249-21257, (2018). https://pubmed.ncbi.nlm.nih.gov/30119429/

Chen, F., Zhao, Q., Chen, Y., & Chen, J. “Polarization properties of quasi-homogeneous beams propagating in oceanic turbulence”, J. Opt. Soc. Korea, 17(2), 130-135, (2013). https://doi.org/10.3807/JOSK.2013.17.2.130

Huang, Y., Zhang, B., Gao, Z., Zhao, G., & Duan, Z. “Evolution behavior of Gaussian shell-model vortex beams propagating through oceanic turbulence”, Opt. Express, 22(15), 17723-17734, (2014). https://pubmed.ncbi.nlm.nih.gov/25089392/

Lu, L., Zhang, P. F., Fan, C. Y., & Qiao, C. H. “Influence of oceanic turbulence on propagation of a radial Gaussian beam array”, Opt. Express, 23(3), 2827-2836, (2015). https://www.sciencedirect.com/science/article/abs/pii/S0030402614011371

Ding, C., Liao, L., Wang, H., Zhang, Y., & Pan, L. “Effect of oceanic turbulence on the propagation of cosine-Gaussian-correlated Schell-model beams”, J. Opt., 17(3), 035615-035623, (2015). https://iopscience.iop.org/article/10.1088/2040-8978/17/3/035615

Li, Y., Han, Y., & Cui, Z. “On-axis average intensity of a hollow Gaussian beam in turbulent ocean”, Opt. Eng., 58(9), 096115-096121, (2019). https://www.researchgate.net/publication/336151875

Liu, D., Wang, G., Yin, H., Zhong, H., & Wang, Y. “Propagation properties of a partially coherent anomalous hollow vortex beam in underwater oceanic turbulence”, Opt. Commun., 437(1), 346-354, (2019). https://www.sciencedirect.com/science/article/abs/pii/S0030401819300070

Liu, D., Yin, H., Wang, G., & Wang, Y. “Propagation of partially coherent Lorentz-Gauss vortex beam through oceanic turbulence”, Appl. Opt., 56(31), 8785-8792, (2017). https://opg.optica.org/ao/abstract.cfm?uri=ao-56-31-8785&origin=search

Ata, Y., & Baykal, Y. “Effect of anisotropy on bit error rate for an asymmetrical Gaussian beam in a turbulent ocean”, Appl. Opt., 57(9), 2258-2262, (2018). https://opg.optica.org/ao/abstract.cfm?uri=ao-57-9-2258

Bayraktar, M. “Average intensity of astigmatic hyperbolic sinusoidal Gaussian beam propagating in oceanic turbulence”, Phys. Scr., 96(1), 1-9, (2020). https://iopscience.iop.org/article/10.1088/1402-4896/abce36

Ye, F., Zhang, J., Xie, J., & Deng, D. “Propagation properties of the rotating elliptical chirped Gaussian vortex beam in the oceanic turbulence”, Opt. Commun., 426(1), 456-462, (2018). https://www.sciencedirect.com/science/article/abs/pii/S0030401818304681

Benzehoua, H., & Belafhal, A. “Analysis of the behavior of pulsed vortex beams in oceanic turbulence”, Opt. Quant. Electron., 55(1), 684-701, (2023). https://link.springer.com/article/10.1007/s11082-023-04992-6

Benzehoua, H., Saad, F., & Belafhal, A. “A theoretical study of spectral properties of generalized chirped Hermite cosh Gaussian pulse beams in oceanic turbulence”, Opt. Quant. Electron., 55(1), 1-14, (2023). https://link.springer.com/article/10.1007/s11082-023-04992-6

Nossir, N., Dalil-Essakali, L., & Belafhal, A. “Comparative analysis of Bessel higher-order cosh- and sinh-Gaussian beams spreading through oceanic turbulence”, Opt. Quant. Electron., 56(1), 769-787, (2024). https://link.springer.com/article/10.1007/s11082-024-06672-5

Lazrek, M., Hricha, Z., & Belafhal, A. “Propagation properties of vortex cosine hyperbolic-Gaussian beams through oceanic turbulence”, Opt. Quant. Electron., 54(1), 1-14, (2022). https://www.researchsquare.com/article/rs-1054533/v1

Saad, F., Benzehoua, H., & Belafhal, A. “Oceanic turbulent effect on the received intensity of a generalized Hermite cosh-Gaussian beam”, Opt. Quant. Electron., 56(1), 1-15, (2023). https://link.springer.com/article/10.1007/s11082-023-05582-2

Sun, C., Lv, X., Ma, B., Zhang, J., Deng, D., & Hong, W. “Statistical properties of partially coherent radially and azimuthally polarized rotating elliptical Gaussian beams in oceanic turbulence with anisotropy”, Opt. Express, 27(3), 245-256, (2019). https://opg.optica.org/oe/fulltext.cfm?uri=oe-27-8-A245&id=405886

Zhang, J., Xie, J., Ye, F., Zhou, K., Chen, X., Deng, D., & Yang, X. “Effects of the turbulent atmosphere and the oceanic turbulence on the propagation of a rotating elliptical Gaussian beam”, Appl. Phys. B, 124(1), 1-11, (2018). https://link.springer.com/article/10.1007/s00340-018-7038-2

Ye, F., Zhang, J., Xie, J., Deng, D. “Propagation properties of the rotating elliptical chirped Gaussian vortex beam in the oceanic turbulence”, Opt. Commun., 426(1), 456–462, (2018).

https://www.sciencedirect.com/science/article/abs/pii/S0030401818304681

Ye, F., Xie, J., Hong, S., Zhang, J., Deng, D. “Propagation properties of a controllable rotating elliptical Gaussian optical coherence lattice in oceanic turbulence”, Results Phys., 13(1), 1–6, (2019). https://www.sciencedirect.com/science/article/pii/S2211379719303717

Lopez-Mago, D., Bandres, M. A., Gutiérrez-Vega, J. C. “Propagation of Whittaker-Gaussian beams”, in Laser Beam Shaping X, Proc. SPIE, 7430, 286–293, (2009).

https://doi.org/10.1117/12.825282

Bandres, M. A., Gutiérrez-Vega, J. C. “Whittaker-Gaussian beams”, Opt. Lett., 33(2), 177–179, (2008). https://opg.optica.org/ol/abstract.cfm?uri=ol-33-2-177

Nossir, N., Dalil-Essakali, L., Belafhal, A. “Effects of weak to moderate atmospheric turbulence on the propagation properties of the Whittaker-Gaussian laser beam”, Opt. Quant. Electron., 56(1), 189–202, (2023). https://link.springer.com/article/10.1007/s11082-023-05830-5

Nossir, N., Dalil-Essakali, L., Belafhal, A. “Propagation analysis of Whittaker-Gaussian laser beam in a gradient-index medium”, Opt. Quant. Electron., 55(1), 1–10, (2023).

https://link.springer.com/article/10.1007/s11082-023-05317-3

Tang, B., Chen, K., Huang, L., Zhou, X., Lang, X. “Radiation force acting on a Rayleigh dielectric sphere produced by Whittaker-Gaussian beams, Opt. Laser Technol., 107, 239–243, (2018). https://www.sciencedirect.com/science/article/abs/pii/S0030399217319369

Srivastava, H. M., Manocha, H. L. “A Treatise on Generating Functions”, Halsted Press, John Wiley and Sons, New York, (1984).

Nikishov, V. V., Nikishov, V. I. “Spectrum of turbulent fluctuations of the sea-water refraction index”, Int. J. Fluid Mech. Res., 27, 82–98, (2000).

https://www.researchgate.net/publication/282798559

Abramowitz, M., Stegun, I. “Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables”, U.S. Department of Commerce, (1970).

I.S. Gradshteyn, I.M. Ryzhik, “Tables of Integrals Series, and Products”. 5th Edition, Academic Press, New York, (1994).

Similar Articles

<< < 1 2 3 4 > >> 

You may also start an advanced similarity search for this article.