A hybrid Feature Selection Method Based on Binary PSO Algorithm for Microarray Data Classification

https://doi.org/10.59628/jast.v2i4.1023

المؤلفون

  • Heba Al.Marwai Sana'a University
  • Ghaleb H AL-Gaphari Department of Computer Science , Faculty of Computer IT, University of Sana’a, Sana’a, Yemen

الكلمات المفتاحية:

Feature selection، Particle Swarm Optimiza- tion algorithm، Wrapper method، Dimension reduction، Multi attribute decision making

الملخص

Microarray technology produces data with a large number of dimensions. The abundance of dimensions in the data makes it challenging for machine learning algorithms to extract meaningful information from it. To overcome this limitation, feature selection (FS) techniques can be applied to reduce the dimensionality of the data. FS is a crucial preprocessing step that allows for the handling of high-dimensional data and facilitates more effective and efficient processing. The primary objective of this paper is to develop an efficient FS method that can effectively reduce the dimensionality of microarray data. The Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) is utilized in the first filtering stage to extract informative features. The best feature subset is then determined by using a Particle Swarm Optimization (PSO) algorithm as a wrapper feature selector to identify ideal features. The proposed approach is evaluated using microarray datasets from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) and compared with other algorithms. The experimental findings indicate that the proposed approach outperforms the benchmark methods in terms of classification accuracy.

التنزيلات

بيانات التنزيل غير متوفرة بعد.
Overall architecture for the proposed approach

منشور

2024-09-02

كيفية الاقتباس

Al.Marwai, H., & AL-Gaphari, G. H. (2024). A hybrid Feature Selection Method Based on Binary PSO Algorithm for Microarray Data Classification. مجلة جامعة صنعاء للعلوم التطبيقية والتكنولوجيا, 2(4), 375–380. https://doi.org/10.59628/jast.v2i4.1023

المؤلفات المشابهة

1 2 3 4 > >> 

يمكنك أيضاً إبدأ بحثاً متقدماً عن المشابهات لهذا المؤلَّف.