Transverse Instability of Relativistic Ion-Acoustic Solitons in a Magnetized Space Plasmas with Heavy Ions and Superthermal Pair Electrons
Main Article Content
Abstract
A two-dimensional Zakharov Kuznetsov (ZK) equation was derived for ion-acoustic (IA) solitons in magnetoplasmas with relativistic streaming warm ions, superthermal electrons and positrons, and stationary heavy ions (either positive or negative). The transverse instability of the IA solitons was investigated using the small- κ perturbation expansion method. The effects of plasma parameters such as the concentration of positive/negative heavy ions, relativistic streaming velocity of ions, superthermality of electrons and positrons, positron concentration, ion temperature, and magnetic field strength on the instability of IA solitons are investigated. These parameters have a significant effect on the instability growth rate. The results also indicate that the solitons tended to be stable in the plasma model containing negatively charged heavy ions. The findings of this work may provide valuable insights into the understanding of astrophysical systems, especially in the context of pulsar magnetospheres, solar wind, and Van Allen radiation belts, where relativistic ions and superthermal electron-positron coexist with heavy ions.
Downloads
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
References
H. R. Miller and P. J. Witter, Active galactic nuclei (Springer, Berlin, 1987).
E. Tandberg-Hansen and A. G. Emslie, The physics of solar flares (Cambridge University Press, Cambridge, 1988)
A. V. Gurevich and Y. Istomin, Physics of the pulsar magnetosphere (Cambridge University Press, Cambridge, 1993).
P. O. Dovner, A. I. Eriksson, R. Boström, and B. Holback, Frejamultiprobe observations of electrostatic solitary structures. Geophys. Res. Lett. 21 (1994) 1827–1830.
P.K. Prasad and A. Saha, Dynamical behavior and multistability of ion-acoustic waves in a magnetized Auroral zone plasma. J. Astrophys. Astron. 42 (2021) 9.
S. I. Popel, S. V. Vladimirov, and P. K. Shukla, ion-acoustic solitons in electron-positrons-ion plasmas. Phys. Plasmas 2, (1995) 716-719.
S. Mahmood and N. Akhtar, Ion acoustic solitary waves with adiabatic ions in magnetized electron-positron-ion plasmas. Eur. Phys. J. D 49 (2008) 217–222.
H. R. Pakzad, Ion acoustic solitary waves in plasma with nonthermal electron and positron. Phys. Lett. A 373 (2009) 847-850 .
T. K. Baluku and M. A. Hellberg, Ion acoustic solitary waves in an electron-positrons-ions plasma with non-thermal electrons. Plasma Phys. Control. Fusion 53 (2011) 095007.
A. E. Mowafy, nonlinear ion-acoustic solitary waves in electron-positron-ion inhomogenous plasma. Theoretical and Mathematical Physics, 71 (2016) 229-236.
N. Gul and R. Ahmad, Dissipative ion-acoustic solitons in electron-positrons-ion plasma with non-thermal electrons and iso-thermal positrons. Advance in Space Research 68(1) (2021) 161-169.
B. Abraham-Shrauner, J. R. Asbridge, S. J. Bame, and W. C. Feldman, Proton-driven electro-magnetic instabilities in high-speed solar wind streams. J. Geophys. Res. Space Phys. 84 (1979) 553–559.
A. T. Y. Lui and S. M. Krimigis, Earthward transport of energetic protons in the Earth’s plasma sheet. Geophys. Res. Lett. 8 (1981) 527–530.
M. R. Collier and D. C. Hamilton, The relationship between kappa and temperature in energetic ion spectra at Jupiter. Geophys. Res. Lett. 22(3) (1995) 303–306
T. P. Armstrong, M.T. Paonessa, E.V. Bell, and S.M. Krimigis, Voyager observations of Saturnian ion and electron phase space densities. J. Geophys. Res. Space Phys. 88 (A11) (1983) 8893–8904
A .F. Vinas, H. K. Wong, and A. J. Klimas, Generation of electron suprathermal tails in the upper solar atmosphere: implications for coronal heating. Astrophys. J. 528 (2000) 509–523.
R. A. Shahein, M. H. Raddadi, Bifurcation analysis of ion-acoustic solitary and periodic waves of superthermal electron-positron with a strongly relativistic plasma. Appl. Math. Sci. 16 (3) (2022) 103–125.
V. M. Vasyliunas, Survey of low-energy electrons in the evening sector of the magnetosphere with OGO1 and OGO3. J. Geophys. Res. 73(9) (1968) 2839–2884.
G. Williams and I. Kourakis, On the existence and stability of electrostatic structures in non-Maxwellian electron-positron-ion plasma Plasmas Phys. 20, (2013) 122311.
M. Shahmansouri and E. Astaraki, Transverse perturbation on three-dimensional ion-acoustic waves in electron-positron-ion plasma with high-energy tail electron and positron distribution. J. Theor. Appl. Phys. 8 (2014) 189-201.
J. Wang, Y. Zeng, Z. Liang, Y. Xu, and Y. Zhang, Ion acoustic quasi-soliton in an electron-positron-ion plasma with superthermal electrons and positrons. Open Phys. 16 (2018) 563-567
J. Ozah and P.N. Deka, Dynamical behaviour of nonlinear structures in superthermal plasmas associated with external periodic force. Indian J. Phys. 97 (2023) 2197–2208.
S.Y. El-Monier, A.S. El-Helbawy, M. M. Elsayed, and M. Saad, The role of superthermal electrons and positrons on magnetized oscillatory shock waves. Pramana-J Phys. 98 (2024) 13
S. J. Bame, J. R. Asbridge, W. C. Feldman, M. D. Montgomery, and P. D. Kearney, Solar wind heavy ion abundances. Sol. Phys. 43 (1975) 463-473
P. R. Young, The Ne/O abundance ratio in the quiet sun. A&A, 444 (2005) L45-L48.
C. M. S. Cohen, G. M., Mason, and R. A. Mewaldt, Characteristics of solar energetic ions as a function of longitude. ApJ. 843(2) (2017) 132 (18pp).
J. I. Vette, Summary of Particle Population in the Magnetosphere (Reidel, Dordrecht, 1970).
H. Ikezi, Experiments on ion-acoustic solitary waves. Phys. Fluids 16 (1973) 1668-1675.
J. Arons, Some problems of pulsar physics., Space Sci. Rev. 24 (1979) 437–510.
T. S. Gill, A. S. Bains, and N. S. Saini, Ion acoustic soliton in weakly relativistic magnetized electron–positron–ion plasma., Can. J. Phys. 87 (2009) 861–866
H. R. Pakzad, Ion acoustic solitons of KdV and modified KdV equations in weakly relativistic plasma containing nonthermal electron, positron and warm ion., Astrophys. Space Sci. 332 (2011) 269-277.
M. A. Khaled, On the head-on collision between two ion acoustic solitary waves in a weakly relativistic plasma containing nonextensive electrons and positrons. Astrophys. Space Sci. 350 (2014) 607–614.
M. G. Hafez and M. R. Talukder, Ion acoustic solitary waves in plasmas with nonextensive electrons, Boltzmann positrons and relativistic thermal ions. Astrophys. Space Sci. 359 (2015) 27-1 27-9.
K. Javidan and D. Saadatmand, Effect of high relativistic ions on ion acoustic solitons in electrons-positrons-ions plasmas with nonthermal electrons and thermal positrons. Astrophys. Space Sci. 333 (2011) 471-475.
K. Javidan and H. R. Pakzad, ion acoustic solitary waves in high relativistic plasmas with superthermal electrons and thermal positrons. Indian J. Phys. 86 (11) (2012) 1037-1042.
J. Kalita, R. Das, K. Hosseini, D. Baleanu, and E. Hincal, Ion acoustic soliton with thermal ions and non-thermal electrons in a high-relativistic electron-positron-ion plasma., Partial Differential Equations in Applied Mathematics 8 (2023) 100579.
K. Jyotishmita, M. Bhargab, and D. Ranjan, High-relativistic effect on ion acoustic solitons in electron-positron-ion plasma., J. Korean Phys. Soc., 84 (2) (2024) 120-127.
A. Mushtaq, H.A. Shah, Nonlinear Zakharov–Kuznetsov equation for obliquely propagating two-dimensional ion-acoustic waves in a relativistic, rotating magnetized electron–positron–ion plasma, Phys. Plasmas 12 (7) (2005) 072306.
S. Raut, K. K. Mondal, P. Chatterjee, and A. Roy, Two-dimensional ion-acoustic solitary waves obliquely propagating in a relativistic rotating magnetisied electron-positron-ion plasma in the presence of external periodic force., Pramana-J. Phys. 95 (1) (2021) 73-1-73-13.
J. Ozah and P. N. Deka, Dynamics of ion-acoustic waves in a magnetized plasma with two-temperature superthermal electrons. ICNDA , 405, (2024) 370–381.
M. A. Allen and G. Rowlands, Determination of the growth rate for the linearized Zakharov-Kuznetsov equation., J. Plasma Physics, 50 (1993) 413-424.
M. A. Allen and G. Rowlands, Stability of obliquely propagating plane solitons of the Zakharov-Kuznetsov equation., J. Plasma Physics, 53 (1995) 63-73.
M. Shalaby, S. K. EL-Labany, E. F. EL-Shamy, W. F. El-Taibany, and M. A. Khaled, On the stability of obliquely propagating dust ion-acoustic solitary waves in hot adiabatic magnetized dusty plasmas. Phys. Plasmas, 16 (2009) 123706.
M. Shalaby, S. K. EL-Labany, E. F. EL-Shamy, and M. A. Khaled, Three dimensional instability of dust ion-acoustic solitary waves in a magnetized dusty plasma with two different types of nonisothermal electrons. Phys. Plasmas 17 (2010) 113709.
M. A. H. Khaled, Dust ion acoustic solitary waves and their multi-dimensional instability in a weakly relativistic adiabatic magnetized dusty plasma with two different types of adiabatic electrons. Indian J. Phys. 88 (2014) 647-656.
N. Akhtar, W. F. El-Taibany, S. Mahmood, E. E. Behery, S. A. Khan, S. Ali and S. Hussain, Transverse instability of ion acoustic solitons in a magnetized plasma including q-nonextensive electrons and positrons., J. Plasma Phys. 81 (2015) 90581051.
N. A. Zedan , A. Atteya , W. F. El-Taibany and S. K. EL-Labany, Stability of ion-acoustic solitons in a multi-ion degenerate plasma with the effects of trapping and polarization under the influence of quantizing magnetic field. Waves in Random and Complex Media, 32 (2) (2020) 728-742.
H. Washimi and T. Taniuti, Propagation of ion acoustic solitary waves of small amplitude., Phys. Rev. Lett., 17 (1966) 996-998.