Assessing the Impact of Climate Change on Water Requirements and Productivity of Improved Arabic wheat crops in the Sana'a Basin

Main Article Content

Hassan Mutahhar Amer
Abdullah Mohammad Yaya
Adel Mohammad Al-Weshali

Abstract

The study aimed to analyze the impact of climate change on water requirements and productivity of improved Arabic wheat in the Sana'a Basin, by conducting field experiments for two agricultural seasons (2023-2024 AD) on the farm of the Faculty of Agriculture, Sana'a University. It included three irrigation treatments: (full irrigation (I1), 75% deficit irrigation (I2), and 50% deficit irrigation (I3) of the full irrigation) using a randomized complete block design. The Aqua Crop model was used for modeling, calibrated with data from the first agricultural season of 2023 and validated with data from the second agricultural season of 2024. The model was validated using three global climate models: CNRM-CM5, GFDL-ESM2M, and EARTH-EC, and two gas emission scenarios: Rcp4.5 and Rcp8.5, for each model, and at an increased and constant CO2 concentration (350 ppm). The study revealed that irrigation treatment (I2) achieved the highest water productivity (WPET) values during the two seasons, ranging from 0.72 to 0.69 tons/m³, respectively. Its water permeability (WPI) ranged from 0.74 to 0.72 tons/m³, respectively. The correlation coefficient (R²) showed high agreement between the calculated and predicted values for grain productivity and biomass for the two seasons, ranging from 99.93 to 100. and (99, 95%) (%), respectively. The grain productivity values for the two seasons were higher in irrigation treatment (I1), ranging between (2.27, 2.52) (tons/ha), respectively, compared to irrigation treatments (I2) and (I3), which ranged between (2.15, 1.95), (1.0, 1.02) (tons/ha), respectively, at a significance level of (0.05). Climate changes recorded an increase in maximum temperatures by 2.47°C for the RCP8.5 scenario and the period 2040–2059, according to the EC-Earth model. Meanwhile, rainfall recorded a decrease of 16.18 mm in the RCP8.5 scenario for the same period and the GFDL-ESM2M model, compared to the reference (historical) period (2005 , 1986) With increased CO₂, irrigation treatment (I1) achieved the highest grain productivity value. (3.24) (tons/ha) according to the RCP8.5 scenario for the period (2020-2039), while under constant CO₂, the lowest value was recorded for irrigation treatment (I3) (0.82) (tons/ha) according to the RCP4.5 scenario for the same period . The highest actual evapotranspiration values were recorded for treatment (I1) at (384.60) (mm) according to the RCP8.5 scenario for the period (2020-2039) under constant CO₂. The lowest values were recorded for treatment (I3) under increasing CO₂, at (266.0 (mm) according to the RCP8.5 scenario for the period (2039-2020 ) The study showed that the experimental site will witness an increase in the productivity of the improved Arabic wheat crop, and assuming an increase in carbon dioxide concentration, this contributes to increased crop productivity.

Downloads

Download data is not yet available.

Article Details

How to Cite
Mutahhar Amer, H., Mohammad Yaya, A., & Mohammad Al-Weshali, A. (2025). Assessing the Impact of Climate Change on Water Requirements and Productivity of Improved Arabic wheat crops in the Sana’a Basin. Sana’a University Journal of Applied Sciences and Technology, 3(6), 1358–1377. https://doi.org/10.59628/jast.v3i6.2129
Section
Article

References

المراجع العربية:

الإسكوا. (2019). تقييم تأثير التغيرات في المياه المتاحة على إنتاجية المحاصيل الزراعية: تقرير دراسة الحالة في الأردن، السودان، العراق، المغرب، اليمن، تونس، لبنان وفلسطين. الأمم المتحدة.

حلاوه، ب. ب. (2022). تقييم تأثير تغير المناخ في إنتاجية محصول الذرة باستخدام برنامج AquaCrop في محطة بحوث المختارية في محافظة حمص [رسالة ماجستير، جامعة البعث].

سيف، ع. ع.، الأشول، ح. ح.، والخرساني، ع. ع. (2020). التغيرات المناخية وأثرها في إنتاجية بعض المحاصيل الاقتصادية في الجمهورية اليمنية. المجلة السورية للبحوث الزراعية، 3 (7)، 246–258.

وزارة الزراعة والري. (2001). الدليل الزراعي – المرتفعات الوسطى. الهيئة العامة للبحوث والإرشاد الزراعي.

وزارة الزراعة والثروة السمكية والموارد المائية. (2023). كتاب الإحصاء الزراعي السنوي للعام 2023.

المراجع الإنجليزية:

Abedinpour, M., Sarangi, A., Rajput, T.B.S., Singh, M., Pathak, H. and Ahmad, T. (2012) Performance evaluation of AquaCrop model for maize crop in a semi-arid environment. Agricultural Water Management, 110 (3), pp. 55–66. Available at: https://doi.org/10.1016/j.agwat.2012.04.001.

Ainsworth, E.A. and Long, S.P. (2005) What have we learned from 15 years of free-air CO₂ enrichment (FACE)? A meta-analytic review of the responses of photosynthesis, canopy properties and plant production to rising CO₂. New Phytologist, 165 (2), pp. 351–372. Available at: https://doi.org/10.1111/j.1469-8137.2004.01224.x.

Allen, R.G., Pereira, L.S., Raes, D. and Smith, M. (1998) Crop evapotranspiration: Guidelines for computing crop water requirements. FAO Irrigation and Drainage Paper No. 56. Rome: Food and Agriculture Organization.

Aghajanloo, M.B. and Nikbakht, J. (2023) Simulation and assessment of AquaCrop model in deficit irrigation management of winter wheat in Zanjan region. Water and Soil Science, 33 (2), pp. 23–34.

Asseng, S., Ewert, F., Martre, P., Rötter, R.P., Lobell, D.B., Cammarano, D., Kimball, B.A., Ottman, M.J., Wall, G.W., White, J.W., Reynolds, M.P., Alderman, P.D., Prasad, P.V.V., Aggarwal, P.K., Anothai, J., Basso, B., Biernath, C., Challinor, A.J., De Sanctis, G., … and Zhu, Y. (2015) Rising temperatures reduce global wheat production. Nature Climate Change, 5 (2), pp. 143–147. Available at: https://doi.org/10.1038/nclimate2470.

Bouras, E., Jarlan, L., Khabba, S., Er-Raki, S., Dezetter, A., Sghir, F. and Tramblay, Y. (2019) Assessing the impact of global climate changes on irrigated wheat yields and water requirements in a semi-arid environment of Morocco. Scientific Reports, 9 (1), 19142. Available at: https://doi.org/10.1038/s41598-019-55251-2.

Dercas, N., Dalezios, N.R., Spyropoulos, N.V. and Psomiadis, E. (2022) AquaCrop simulation of winter wheat under different N management practices. Hydrology, 9 (4), 56. Available at: https://doi.org/10.3390/hydrology9040056.

Deryng, D., Elliott, J., Folberth, C., Müller, C., Pugh, T.A.M., Boote, K.J., Conway, D., Ruane, A.C., Gerten, D., Jones, J.W., Khabarov, N., Olin, S., Schaphoff, S., Schmid, E., Yang, H. and Rosenzweig, C. (2016) Regional disparities in the beneficial effects of rising CO₂ concentrations on crop water productivity. Nature Climate Change, 6 (8), pp. 786–790. Available at: https://doi.org/10.1038/nclimate2995.

Food and Agriculture Organization (FAO) (2014) The water-energy-food nexus: A new approach in support of food security and sustainable agriculture. Rome: FAO. Available at: http://www.fao.org/publications.

Hunter, M.C., Smith, R.G., Schipanski, M.E., Atwood, L.W. and Mortensen, D.A. (2017) Agriculture in 2050: Recalibrating targets for sustainable intensification. Bioscience, 67 (4), pp. 386–391. Available at: https://doi.org/10.1093/biosci/bix010.

Intergovernmental Panel on Climate Change (IPCC) (2022) Climate change 2022: The physical science basis. Cambridge: Cambridge University Press.

Jia, D., Shen, Y., Shi, M. and Li, Y. (2022) Impact of climate change on the yield and water footprint of winter wheat in the Haihe River Basin, China. Atmosphere, 13 (4), 630. Available at: https://doi.org/10.3390/atmos13040630.

Kale, S. and Madenoğlu, S. (2018) Evaluating AquaCrop model for winter wheat under various irrigation conditions in Turkey. Journal of Agricultural Sciences, 24 (2), pp. 205–217.

Nematallah, Y.O. and Kasem, A.A. (2021) Assessment of AquaCrop model in simulating wheat crop water use and productivity in Middle Egypt. Middle East Journal of Applied Sciences, 11 (3), pp. 500–510.

Pontius, R.G., Thontteh, O. and Chen, H. (2008) Components of information for multiple resolution comparison between maps that share a real variable. Environmental and Ecological Statistics, 15 (2), pp. 111–142. Available at: https://doi.org/10.1007/s10651-007-0043-y.

Raes, D., Steduto, P., Hsiao, T.C. and Fereres, E. (2023) Reference manual of AquaCrop Version 7.1 Annexes. Rome: Food and Agriculture Organization. Available at: https://openknowledge.fao.org/server/api/core/bitstreams/1479f444-c112-4faa-b3dc-bc73b0637332/content.

Steduto, P., Hsiao, T.C., Raes, D. and Fereres, E. (2012) Crop yield response to water. FAO Irrigation and Drainage Paper No. 66. Rome: Food and Agriculture Organization.

Tirfi, A.G. and Oyekale, A.S. (2022) Impact of climate change on yields of wheat in Ethiopia: An augmented Cobb-Douglas production function approach. Journal of Agricultural, Food and Environmental Sciences, 76 (1), pp. 34–47.

Todorovic, M., Albrizio, R., Zivotic, L., Abi Saab, M.T., Stöckle, C. and Steduto, P. (2009) Assessment of AquaCrop, CropSyst, and WOFOST models in the simulation of sunflower growth under different water regimes. Agronomy Journal, 101 (3), pp. 509–521. Available at: https://doi.org/10.2134/agronj2008.0166s.

Willmott, C.J., Robeson, S.M. and Matsuura, K. (2013) A refined index of model performance. International Journal of Climatology, 33 (4), pp. 1053–1056. Available at: https://doi.org/10.1002/joc.2419.

Windmeijer, F. and Cameron, A.C. (1995) An R-squared measure of goodness of fit for some common nonlinear regression models. Journal of Econometrics, 77, pp. 329–342. Available at: https://doi.org/10.1016/0304-4076(94)01669-O.

World Bank (2010) Assessing impact of climate change on water resources and agriculture in Yemen. Washington, DC: World Bank. Available at: https://documents.worldbank.org.

Similar Articles

<< < 1 2 3 4 > >> 

You may also start an advanced similarity search for this article.