Plant Extracts Are a Promising Solution to Alleviate Salinity Stress at the Chili Pepper Germination Stage

Plant Extracts Are a Promising Solution to Alleviate Salinity Stress at the Chili Pepper Germination Stage

https://doi.org/10.59628/jast.v3i3.1663

المؤلفون

  • Elham Arraf Department of Horticulture and Technology, Faculty of Agriculture, Foods and Environment, Sana’a University, Sana’a P.O. Box 1247, Yemen
  • Isam Al-madhagi Department of Horticulture and Technology, Faculty of Agriculture, Foods and Environment, Sana’a University, Sana’a P.O. Box 1247, Yemen
  • Hemiar Haissam Department of Horticulture and Technology, Faculty of Agriculture, Foods and Environment, Sana’a University, Sana’a P.O. Box 1247, Yemen

الكلمات المفتاحية:

Chili، Germination، Plant، Salinity

الملخص

Salinity is one of the most pervasive abiotic stressors limiting global agricultural productivity, particularly by impairing seed germination in sensitive species, such as chili peppers (Capsicum spp.). This study rigorously evaluated the potential of nature-derived biostimulants to alleviate salinityinduced germination inhibition in three agronomically important Yemeni chili pepper genotypes: Haimi (H), Hajjah (J), and Jawfi3 (V3). Aqueous extracts from red beetroot, prickly pear fruit, carrot roots, and moringa leaves and flowers were subjected to an optimized 18-hour seed priming protocol. The seeds were germinated at three salinity levels (0, 150, and 250 mM NaCl) in a randomized complete block design. The results revealed a striking mitigation of salinity stress at 150 mM NaCl by all plant extracts, with substantial protective effects observed at the extreme 250 mM NaCl concentration. Notably, beetroot extract emerged as the most potent biostimulant, consistently delivering the highest Extract Stimulation Index (ESI%) across all germination parameters including germination percentage (GrP%), mean germination time (MGT), germination speed (GSC), and radicle length. Its performance was robust across all genotypes and salinity levels, thereby highlighting its broad-spectrum efficacy.
These findings provide the first empirical evidence that cost-effective natural extracts, particularly from red beetroot and prickly pear fruit, can match or surpass synthetic priming agents in enhancing seed germination under saline conditions.

التنزيلات

بيانات التنزيل غير متوفرة بعد.

المراجع

K. H. Kraft, C. H. Brown, G. P. Nabhan, E. Luedeling, J. d. J. Luna Ruiz, G. Coppens d’Eeckenbrugge, R. J. Hijmans and P. Gepts, “Multiple lines of evidence for the origin of domesticated chili pepper, Capsicum annuum, in Mexico”, Proceedings of the National Academy of Sciences 111 (17) (2014) 6165-6170 DOI: http://dx.doi.org/doi:10.1073/pnas.1308933111.

D. Comparini, C. Taiti, M. Lanza, F. Vita, C. Pandolfi, S. Luti, F. Spinelli, L. Pazzagli and S. Mancuso, “Comparison of wild and domesticated hot peppers fruit: volatile emissions, pungency and protein profiles”, Advances in Horticultural Science 35 (3) (2021) 305-327 DOI: http://dx.doi.org/10.36253/ahsc-10630.

C. Taiti, C. Costa, P. Menesatti, D. Comparini, N. Bazihizina, E. Azzarello, E. Masi and S. Mancuso, “Class-modeling approach to PTR-TOFMS data: a peppers case study”, Journal of the Science of Food and Agriculture 95 (8) (2015) 1757-1763 DOI: http://dx.doi.org/10.1002/jsfa.6761.

C. Taiti, D. Comparini, L. Moscovini, S. Violino, C. Costa and S. Mancuso, “Influence of the Drying Process on the Volatile Profile of Different Capsicum Species”, Plants 13 (8) (2024) 1131 DOI: http://dx.doi.org/10.3390/plants13081131.

M. Nagaraju and M. Kumar, “Hot Pepper-History-Health and Dietary Benefits & Production”, International Journal of Current Microbiology and Applied Sciences 9 number 4(2020 (2020) 2532-2538 DOI: http://dx.doi.org/10.20546/ijcmas.2020.904.303.

B. Saleh, A. Omer and B. Teweldemedhin Keleta, “Medicinal uses and health benefits of chili pepper (Capsicum spp.): a review”, MOJ Food Processing & Technology 6 (2018) DOI: http://dx.doi.org/10.15406/mojfpt.2018.06.00183.

P. V. Dludla, I. Cirilli, F. Marcheggiani, S. Silvestri, P. Orlando, N. Muvhulawa, M. T. Moetlediwa, B. B. Nkambule, S. E. Mazibuko-Mbeje, N. Hlengwa, S. Hanser, D. Ndwandwe, J. L. Marnewick, A. K. Basson and L. Tiano, “Bioactive Properties, Bioavailability Profiles, and Clinical Evidence of the Potential Benefits of Black Pepper (Piper nigrum) and Red Pepper (Capsicum annum) against Diverse Metabolic Complications”, Molecules 28 (18) (2023) 6569 DOI: http://dx.doi.org/10.3390/molecules28186569.

A. Serio, F. Maggio, A. Ben Hsouna, R. Ben Saad, C. Taiti and S. Garzoli, “Exploring the Metabolome and Antimicrobial Properties of Capsicum annuum L. (Baklouti and Paprika) Dried Powders from Tunisia”, Molecules 29 (22) (2024) 5236 DOI: http://dx.doi.org/10.3390/molecules29225236.

hor (2022) United National Food and Agricultural Statistical Database.http://www.faostat.fao.org.

P. Kumar and P. K. Sharma, “Soil Salinity and Food Security in India”, Frontiers in sustainable food systems 4 (2020) DOI: http://dx.doi.org/10.3389/fsufs.2020.533781.

K. Atta, S. Mondal, S. Gorai, A. P. Singh, A. Kumari, T. Ghosh, A. Roy, S. Hembram, D. J. Gaikwad, S. Mondal, S. Bhattacharya, U. C. Jha and D. Jespersen, “Impacts of salinity stress on crop plants: improving salt tolerance through genetic and molecular dissection”, Frontiers in plant science 14 (2023) DOI: http://dx.doi.org/10.3389/fpls.2023.1241736.

M. Khondoker, S. Mandal, R. Gurav and S. Hwang, “Freshwater Shortage, Salinity Increase, and Global Food Production: A Need for Sustainable Irrigation Water Desalination—A Scoping Review”, Earth 4 (2) (2023) 223-240 DOI: http://dx.doi.org/10.3390/earth4020012.

R. Munns, “Genes and salt tolerance: bringing them together”, New Phytologist 167 (3) (2005) 645-663 DOI: http://dx.doi.org/10.1111/j.1469-8137.2005.01487.x.

T. Yamaguchi and E. Blumwald, “Developing salt-tolerant crop plants: challenges and opportunities”, Trends in Plant Science 10 (12) (2005) 615-620 DOI: http://dx.doi.org/10.1016/j.tplants.2005.10.002.

M. Khajeh-Hosseini, A. A. Powell and I. J. Bingham, “The interaction between salinity stress and seed vigour during germination of soyabean seeds”, Seed Science and Technology 31 (3) (2003) 715-725 DOI: http://dx.doi.org/10.15258/sst.2003.31.3.20.

F. Alhadi, H. Ibrahim and A. K. Alkadasy, “Evaluation of Some Growth Parameters of Millet (Pennisetum glaucum (L.) R. Br.) Landraces Cultivated in Al-Mawaset District, Taiz Governorate, Yemen”, Sana'a University Journal of Applied Sciences and Technology 1 (4) (2023) 400-410 DOI: http://dx.doi.org/10.59628/jast.v1i4.563.

P. J. Gregory, S. Ismail, I. B. Razaq and A. Wahbi (2018) Soil Salinity: Current Status and In Depth Analyses for Sustainable Use Chapter 2. Report for (International Atomic Energy Agency (IAEA)).https://www-pub.iaea.org/MTCD/Publications/PDF/TE1841-WEB.pdf

http://inis.iaea.org/search/search.aspx?orig_q=RN:49093373

USAID (2010) Yemen-Propery Rights and Resource Governance Profile Report for.https://www.land-links.org/country-profile/yemen/

A. S. Alqadasi and Y. A. Humaid, “Investigation of Edaphic and Climatic Factors for Thymus laevigatus in Utmah Natural Reserve, Yemen”, Sana'a University Journal of Applied Sciences and Technology 2 (5) (2024) 413-421 DOI: http://dx.doi.org/10.59628/jast.v2i5.1096.

I. Al-madhagi and E. Arraf, “Evaluation of salinity tolerance of Yemeni chilli pepper genotypes during gemination by using different statistically models”, Advances in Horticultural Science 38 (4) (2025) 371-392 DOI: http://dx.doi.org/10.36253/ahsc-16693.

R. Qiu, Y. Jing, C. Liu, Z. Yang and Z. Wang, “Response of hot pepper yield, fruit quality, and fruit ion content to irrigation water salinity and leaching fractions”, HortScience 52 (7) (2017) 979-985 DOI: http://dx.doi.org/10.21273/HORTSCI12054-17.

E. Al-Maqtary, I. Al-Madhagi and K. Al-Mureish, “Salicylic Acid Alleviates the Adverse of Salinity Stress in Fenugreek (Trigonella foenum-graecum)”, Asian Journal of Biology 20 (4) (2024) 30-58 DOI: http://dx.doi.org/10.9734/ajob/2024/v20i4400.

A. Läuchli and E. Epstein, “Plant responses to saline and sodic conditions”, Agricultural salinity assessment and management 71 (1990) 113-137.

R. Munns and M. Gilliham, “Salinity tolerance of crops–what is the cost?”, New Phytologist 208 (3) (2015) 668-673.

I. H. Lycoskoufis, D. Savvas and G. Mavrogianopoulos, “Growth, gas exchange, and nutrient status in pepper (Capsicum annuum L.) grown in recirculating nutrient solution as affected by salinity imposed to half of the root system”, Scientia Horticulturae 106 (2) (2005) 147-161 DOI: http://dx.doi.org/10.1016/j.scienta.2005.02.022.

T. Ntanasi, D. Savvas, I. Karavidas, E. A. Papadopoulou, N. Mazahrirh, V. Fotopoulos, K. A. Aliferis, L. Sabatino and G. Ntatsi, “Assessing Salinity Tolerance and Fruit Quality of Pepper Landraces”, Agronomy 14 (2) (2024) 309 DOI: http://dx.doi.org/10.3390/agronomy14020309.

P. Giorio, V. Cirillo, M. Caramante, M. Oliva, G. Guida, A. Venezia, S. Grillo, A. Maggio and R. Albrizio, “Physiological Basis of Salt Stress Tolerance in a Landrace and a Commercial Variety of Sweet Pepper (Capsicum annuum L.)”, Plants 9 (6) (2020) 795 DOI: http://dx.doi.org/10.3390/plants9060795.

K. Chartzoulakis and G. Klapaki, “Response of two greenhouse pepper hybrids to NaCl salinity during different growth stages”, Scientia Horticulturae 86 (3) (2000) 247-260 DOI: http://dx.doi.org/10.1016/S0304-4238(00)00151-5.

T. Zamljen, A. Medic, M. Hudina, R. Veberic and A. Slatnar, “Salt Stress Differentially Affects the Primary and Secondary Metabolism of Peppers (Capsicum annuum L.) According to the Genotype, Fruit Part, and Salinity Level”, Plants 11 (7) (2022) 853 DOI: http://dx.doi.org/10.3390/plants11070853.

E. V. Maas and G. J. Hoffman, “Crop Salt Toleranc : Current Assessment”, Journal of the irrigation and drainage division 103 (2) (1977) 115-134 DOI: http://dx.doi.org/10.1061/JRCEA4.0001137.

K. Loganayaki, S. Tamizhmathi, D. Brinda, S. Gayathri, M. C. Mary and V. Mohanlal, “In vitro Evaluation of Tomato (Lycopersicon esculentum Mill.), Chilli (Capsicum annum L.), Cucumber (Cucumis sativus L.) and Bhendi (Abelmoschus esculentus L.) for Salinity Stress”, International Journal of Chemical Studies 8 (2) (2020) 2364-2367 DOI: http://dx.doi.org/10.22271/chemi.2020.v8.i2aj.9104.

A. A. Amirinejad, M. Sayyari, F. Ghanbari and S. Kordi, “Salicylic acid improves salinity-alkalinity tolerance in pepper (Capsicum annuum L.)”, Advances in Horticultural Science 31 (3) (2017) 157-163 DOI: http://dx.doi.org/10.13128/ahs-21954.

I. Demir and K. Mavi, “Effect of salt and osmotic stresses on the germination of pepper seeds of different maturation stages”, Brazilian Archives of Biology and Technology 51 (5) (2008) 897–902 DOI: http://dx.doi.org/10.1590/S1516-89132008000500004.

F. Al-swedi, M. Alshamari, I. Al Zaidi and H. Z. Rihan, “Impact of salinity stress on seed germination in lettuce (Lactuca Sativa)”, Journal of Research on the Lepidoptera 51 (1) (2020) 374-385 DOI: http://dx.doi.org/10.36872/LEPI/V51I1/301033.

S. M. Dawd and S. S. Abdulla, “Effect of different salt concentrations on ratio, speed, growth and development of seedlings of some vegetable crops”, Journal of Agricultural and Statistical Sciences 16 (1) (2020) 1755-1759 DOI: http://dx.doi.org/ DocID: https://connectjournals.com/03899.2020.16.1755.

J. K. Kpinkoun, A. M. Amoussa, A. C. G. Mensah, F. A. Komlan, E. Kinsou, L. Lagnika and C. B. Gandonou, “Effect of salt stress on flowering, fructification and fruit nutrients concentration in a local cultivar of chili pepper (Capsicum frutescens L.)”, International Journal of Plant Physiology and Biochemistry 11 (1) (2019) 1–7 DOI: http://dx.doi.org/10.5897/ijppb2019.0284.

A. Zowain, “Effect of salt stress on germination attributes in maize”, The Iraqi Journal of Agricultural Sciences 45 (7) (2014) 738-745.

A. Bolton and P. Simon, “Variation for Salinity Tolerance During Seed Germination in Diverse Carrot [Daucus carota (L.)] Germplasm”, HortScience horts 54 (1) (2019) 38-44 DOI: http://dx.doi.org/10.21273/hortsci13333-18.

E. Karalija, A. Lošić, A. Demir and D. Šamec, “Effects of Seed Priming on Mitigating the Negative Effects of Increased Salinity in Two Varieties of Sweet Pepper (Capsicum annuum L.)”, Soil systems 8 (1) (2024) 35 DOI: http://dx.doi.org/10.3390/soilsystems8010035.

S. Hannachi and M.-C. Van Labeke, “Salt stress affects germination, seedling growth and physiological responses differentially in eggplant cultivars (Solanum melongena L.)”, Scientia Horticulturae 228 (2018) 56-65 DOI: http://dx.doi.org/10.1016/j.scienta.2017.10.002.

J. Singh, E. V. D. Sastry and V. Singh, “Effect of salinity on tomato (Lycopersicon esculentum Mill.) during seed germination stage”, Physiology and Molecular Biology of Plants 18 (1) (2012) 45-50 DOI: http://dx.doi.org/10.1007/s12298-011-0097-z.

S. L. Singla-Pareek, M. K. Reddy and S. K. Sopory, “Genetic engineering of the glyoxalase pathway in tobacco leads to enhanced salinity tolerance”, Proceedings of the National Academy of Sciences 100 (25) (2003) 14672-14677 DOI: http://dx.doi.org/10.1073/pnas.2034667100.

G. Y. Zhu, J.-M. Kinet, P. Bertin, J. Bouharmont and S. Lutt, “Crosses between cultivars and tissue culture-selected plants for salt resistance improvement in rice, Oryza sativa”, Plant Breeding 119 (6) (2000) 497-504 DOI: http://dx.doi.org/10.1046/j.1439-0523.2000.00517.x.

A. F. Yang, X. G. Duan, X. F. Gu, F. Gao and J. R. Zhang, “Efficient transformation of beet (Beta vulgaris) and production of plants with improved salt-tolerance”, Plant Cell, tissue and organ culture 83 (3) (2005) 259-270 DOI: http://dx.doi.org/10.1007/s11240-005-6670-9.

M. Edelstein, M. Ben-Hur, R. Cohen, Y. Burger and I. Ravina, “Boron and salinity effects on grafted and non-grafted melon plants”, Plant and soil 269 (1) (2005) 273-284 DOI: http://dx.doi.org/10.1007/s11104-004-0598-4.

A. Santa-Cruz, M. M. Martinez-Rodriguez, F. Perez-Alfocea, R. Romero-Aranda and M. C. Bolarin, “The rootstock effect on the tomato salinity response depends on the shoot genotype”, Plant Science 162 (5) (2002) 825-831 DOI: http://dx.doi.org/10.1016/S0168-9452(02)00030-4.

M. T. Estañ, M. M. Martinez-Rodriguez, F. Perez-Alfocea, T. J. Flowers and M. C. Bolarin, “Grafting raises the salt tolerance of tomato through limiting the transport of sodium and chloride to the shoot”, Journal of Experimental Botany 56 (412) (2004) 703-712 DOI: http://dx.doi.org/10.1093/jxb/eri027.

A. Momenpour and A. Imani, “Evaluation of salinity tolerance in fourteen selected pistachio (Pistacia vera L.) cultivars”, Advances in Horticultural Science 32 (2) (2018) 249-264 DOI: http://dx.doi.org/10.13128/ahs-22261.

E. Abrahám, G. Rigó, G. Székely, R. Nagy, C. Koncz and L. Szabados, “Light-dependent induction of proline biosynthesis by abscisic acid and salt stress is inhibited by brassinosteroid in Arabidopsis”, Plant Mol Biol 51 (3) (2003) 363-372 DOI: http://dx.doi.org/10.1023/a:1022043000516

M. A. E.-S. Hamdia, M. A. K. Shaddad and M. M. Doaa, “Mechanisms of salt tolerance and interactive effects of Azospirillum brasilense inoculation on maize cultivars grown under salt stress conditions”, Plant Growth Regulation 44 (2) (2004) 165-174 DOI: http://dx.doi.org/10.1023/B:GROW.0000049414.03099.9b.

A. Sakamoto and N. Murata, “The Use of Bacterial Choline Oxidase, a Glycinebetaine-Synthesizing Enzyme, to Create Stress-Resistant Transgenic Plants”, Plant Physiology 125 (1) (2001) 180-188 DOI: http://dx.doi.org/10.1104/pp.125.1.180.

G. D. Semiz, D. L. Suarez, A. Ünlükara and E. Yurtseven, “Interactive Effects of Salinity and N on Pepper (Capsicum Annuum L.) Yield, Water Use Efficiency and Root Zone and Drainage Salinity”, Journal of Plant Nutrition 37 (4) (2014) 595-610 DOI: http://dx.doi.org/10.1080/01904167.2013.867985.

O. I. Yakhin, A. A. Lubyanov, I. A. Yakhin and P. H. Brown, “Biostimulants in Plant Science: A Global Perspective”, Frontiers in plant science 7 (2017) 2049 DOI: http://dx.doi.org/10.3389/fpls.2016.02049.

G. L. Kauffman, D. P. Kneivel and T. L. Watschke, “Effects of a Biostimulant on the Heat Tolerance Associated with Photosynthetic Capacity, Membrane Thermostability, and Polyphenol Production of Perennial Ryegrass”, Crop science 47 (1) (2007) 261-267 DOI: http://dx.doi.org/https://doi.org/10.2135/cropsci2006.03.0171.

I. Al-madhagi, “Effect of humic acid and yeast on the yield of greenhouse cucumber”, Journal of Horticulture and Postharvest Research 2 (Issue 1) (2019) 67-82 DOI: http://dx.doi.org/10.22077/jhpr.2018.1773.1029.

P. du Jardin, “Plant biostimulants: Definition, concept, main categories and regulation”, Scientia Horticulturae 196 (2015) 3-14 DOI: http://dx.doi.org/https://doi.org/10.1016/j.scienta.2015.09.021.

E. A. Arraf and I. A. Al-madhagi, “Comparing Effects of Priming Chili Pepper Seed with Different Plant Biostimulants, with Balancing Effects on Vegetative and Root Growths and Seedling Quality”, International Journal of Horticultural Science and Technology 12 (4) (2025) 1173-1196 DOI: http://dx.doi.org/10.22059/ijhst.2025.377391.859.

S. M. Howladar, “A novel Moringa oleifera Leaf Extract can Mitigate the Stress Effects of Salinity and Cadmium in Bean (Phaseolus vulgaris L.) plants”, Ecotoxicology and Environmental Safety 100 (2014) 69-75 DOI: http://dx.doi.org/10.1016/j.ecoenv.2013.11.022.

S. M. Abbas and S. A. Akladious, “Application of carrot root extract induced salinity tolerance in cowpea (Vigna sinensis L.) seedlings”, Pakistan Journal of Botany 45 (3) (2013) 795-806.

F. C. Stintzing, A. Schieber and R. Carle, “Phytochemical and Nutritional Significance of Cactus Pear”, European Food Research and Technology 212 (4) (2001) 396-407 DOI: http://dx.doi.org/10.1007/s002170000219.

K. K. Tanji and N. C. Kielen. 2002. Agricultural drainage water management in arid and semi-arid areas. Rome: Food And Agriculture Organization of The United Nations ,. ISBN: 92-5-104839-8.

H. W. Klopp in Soil Salinity and Sodicity Impacts on Soil Shrinkage, Water Movement and Retention, Vol. Master North Dakota State University Master of Science, 2015.

M. A. Kader, “A comparison of seed germination calculation formulae and the associated interpretation of resulting data”, Journal and proceedings of the Royal Society of New South Wales 138 (3-4) (2005) 65-75 DOI: http://dx.doi.org/10.5962/p.361564.

M. A. Ranal and D. G. d. Santana, “How and why to measure the germination process?”, Brazilian Journal of Botany 29 (2006) 1-11 DOI: http://dx.doi.org/10.1590/S0100-84042006000100002.

M. A. Ranal, “Effects of Temperature on Spore Germination in Some Fern Species from Semideciduous Mesophytic Forest”, American Fern Journal 89 (2) (1999) 149-158 DOI: http://dx.doi.org/10.2307/1547349.

A. Horuz, A. Balkaya, S. Yıldız, Ş. Sarıbaş and V. Uygur, “Comparison of the Salt Stress Tolerance of Promising Turkish Winter Squash (Cucurbita maxima Duch.) and Pumpkin (Cucurbita moschata Duch.) Lines and Interspecific Hybrids”, Gesunde Pflanzen 74 (1) (2022) 69-86 DOI: http://dx.doi.org/10.1007/s10343-021-00589-9.

B. Gupta and B. Huang, “Mechanism of Salinity Tolerance in Plants: Physiological, Biochemical, and Molecular Characterization”, Int J Genomics 2014 (2014) 701596 DOI: http://dx.doi.org/10.1155/2014/701596.

N. S. Kim, J. K. Kim, R. Sathasivam, H. W. Park, B. V. Nguyen, M. C. Kim, D. M. Cuong, Y. S. Chung and S. U. Park, “Impact of Betaine Under Salinity on Accumulation of Phenolic Compounds in Safflower (Carthamus tinctorius L.) Sprouts”, Natural Product Communications 16 (5) (2021) 1-9 DOI: http://dx.doi.org/10.1177/1934578X211015090.

A. A. H. Abdel Latef, M. G. Mostofa, M. M. Rahman, I. B. Abdel-Farid and L.-S. P. Tran, “Extracts from Yeast and Carrot Roots Enhance Maize Performance under Seawater-Induced Salt Stress by Altering Physio-Biochemical Characteristics of Stressed Plants”, Journal of plant growth regulation 38 (3) (2019) 966-979 DOI: http://dx.doi.org/10.1007/s00344-018-9906-8.

M. S. AbdelFattah, S. E. Badr and A. S. Elsaid, “Nutritive value and chemical composition of prickly pear seeds (Opuntia ficus indica L.) growing in Egypt”, International Journal of Agricultural Policy and Research 8 (1) (2020) 1-10 DOI: http://dx.doi.org/10.15739/IJAPR.20.001i.

S. A. Arafa, K. A. Attia, G. Niedbała, M. Piekutowska, S. Alamery, K. Abdelaal, T. K. Alateeq, M. A. M. Ali, A. Elkelish and S. Y. Attallah, “Seed Priming Boost Adaptation in Pea Plants under Drought Stress”, Plants 10 (10) (2021) 2201 DOI: http://dx.doi.org/10.3390/plants10102201.

W. A. Kasim, A. A. Nessem and A. Gaber, “Effect of Seed Priming with Aqueous Extracts of Carrot Roots, Garlic Cloves or Ascorbic Acid on the Yield of Vicia faba Grown under Drought Stress”, Pak. J. Bot 51 (6) (2019) 1979-1985 DOI: http://dx.doi.org/10.30848/PJB2019-6(41).

E. A. Waraich, R. Ahmad and M. Y. Ashraf, “Role of Mineral Nutrition in Alleviation of Drought Stress in Plants”, Australian Journal of Crop Science 5 (6) (2011) 764-777 DOI: http://dx.doi.org/10.3316/informit.282340708899391.

M. G. Dawood, M. E.-S. El-Awadi, M. S. Sadak and S. R. El-Lethy, “Comparison Between the Physiological Role of Carrot Root Extract and β-carotene in Inducing Helianthus annuus L. Drought Tolerance”, Asian Journal of Biological Sciences 12 (2) (2019) 231-241 DOI: http://dx.doi.org/10.3923/ajbs.2019.231.241.

S. Bello and T. Ahmed, “Moringa Leaf Extract Alleviates Salt Stress in Tomato (Solanum lycopersicum L.) by Activating Antioxidant Defenses, Reducing Osmolyte Accumulation, Improving Water Status, and Enhancing yield.”, Plant Stress 14 (2024) 100640 DOI: http://dx.doi.org/10.1016/j.stress.2024.100640.

W. a. A. Al-Taisan, N. M. Alabdallah and L. Almuqadam, “Moringa Leaf Extract and Green Algae Improve the Growth and Physiological Attributes of Mentha Species under Salt Stress”, Scientific Reports 12 (1) (2022) 14205 DOI: http://dx.doi.org/10.1038/s41598-022-18481-5.

P. J. Davies. 2004. Plant hormones: biosynthesis, signal transduction, action!: Springer Science & Business Media. ISBN: 978-1-4020-2686-7. DOI: http://dx.doi.org/10.1007/978-1-4020-2686-7.

P. J. Davies. 2012. Plant Hormones and their Role in Plant Growth and Development: Springer Science & Business Media. ISBN: 978-94-009-3585-3. DOI: http://dx.doi.org/10.1007/978-94-009-3585-3.

M. M. Abdalla, “The potential of Moringa oleifera extract as a biostimulant in enhancing the growth, biochemical and hormonal contents in rocket (Eruca vesicaria subsp. sativa) plants”, International Journal of Plant Physiology and Biochemistry 5 (3) (2013) 42-49 DOI: http://dx.doi.org/10.5897/IJPPB2012.026.

L. Fuglie, “The miracle tree: Moringa oleifera: natural nutrition for the tropics. The multiple attributes of Moringa”, Int. J. Adv. Res. Ideas Innov. Tehnol 3 (2000) 172.

S. Devkota and K. K. Bhusal, “Moringa oleifera: A Miracle Multipurpose Tree for Agroforestry and Climate Change Mitigation from the Himalayas – A review”, Cogent Food & Agriculture 6 (1) (2020) 1805951 DOI: http://dx.doi.org/10.1080/23311932.2020.1805951.

Y. Sun, F. Miao, Y. Wang, H. Liu, X. Wang, H. Wang, J. Guo, R. Shao and Q. Yang, “L-Arginine Alleviates the Reduction in Photosynthesis and Antioxidant Activity Induced by Drought Stress in Maize Seedlings”, Antioxidants 12 (2) (2023) 482 DOI: http://dx.doi.org/10.3390/antiox12020482.

منشور

2025-06-30

كيفية الاقتباس

Arraf, E., Al-madhagi, I., & Haissam, H. (2025). Plant Extracts Are a Promising Solution to Alleviate Salinity Stress at the Chili Pepper Germination Stage: Plant Extracts Are a Promising Solution to Alleviate Salinity Stress at the Chili Pepper Germination Stage. مجلة جامعة صنعاء للعلوم التطبيقية والتكنولوجيا, 3(3), 868–884. https://doi.org/10.59628/jast.v3i3.1663

المؤلفات المشابهة

1 2 > >> 

يمكنك أيضاً إبدأ بحثاً متقدماً عن المشابهات لهذا المؤلَّف.