

Multitarget Antimicrobial Mechanisms of Plant Extracts: A Review of Harnessing Phytochemicals Against Drug-Resistant Pathogens

Saad Al-Arnoot¹*, Qais Y. M. Abdullah¹, Maher Ail Al-Maqtari², Hasan M. Ibrahim¹, Hassan Abdulwahab Al-Shamahy^{3,4}, Esmail M. M. Salah⁵, Assem Al-Thobhani¹, Mohammed N. Q. Al-Bana¹ and Basem Al-Akhali¹

¹ Biological Science Department, Faculty of Science, Sana'a University, Sana'a, Republic of Yemen,

² Department of Chemistry, Faculty of Science, Sana'a University, Sana'a, Republic of Yemen,

³ Department of Basic Sciences, Faculty of Dentistry, Sana'a University, Republic of Yemen,

⁴ Department of Medical Microbiology and Clinical Immunology, Faculty of Medicine and Health Sciences, Sana'a University, Republic of Yemen,

⁵ Department of Pharmacology, Faculty of Pharmacy, Sana'a University, Republic of Yemen.

*Corresponding author: s.alarnoot@su.edu.ye

ABSTRACT

The global rise of antimicrobial resistance threatens the efficacy of current antibiotics and underscores the limitations of the single-target drug paradigm. In response, plant-derived phytochemicals offer a rich, historically validated source of multitarget antimicrobial agents. This review highlights the diverse classes of phytochemicals including alkaloids, flavonoids, terpenoids, and phenolic compounds and their pleiotropic mechanisms of action. These include disrupting microbial membranes, inhibiting key enzymes, interfering with nucleic acid and protein synthesis, and targeting virulence factors like biofilms and quorum sensing. Crucially, many phytochemicals exhibit synergistic interactions both within complex extracts (entourage effect) and when combined with conventional antibiotics, thus enhancing therapeutic potential and mitigating resistance. Despite promising in vitro data, challenges remain in standardization, bioavailability, and regulatory approval. However, integration of ethnobotanical knowledge with modern technologies such as nanotechnology, chemical fingerprinting, and clinical trials offers a viable path forward. Embracing the multitarget nature of phytochemicals is not only innovative but essential in overcoming AMR and revitalizing antimicrobial therapy. This review is based on a structured and systematic search of peer-reviewed literature from major databases including PubMed, Scopus, ScienceDirect, and Google Scholar, covering the period from 2000 to May 2025. Keywords related to phytochemicals and antimicrobial resistance were used, with a focus on original studies, reviews, and credible epidemiological reports from WHO, CDC, and FAO.

ARTICLE INFO

Keywords:

Antimicrobial resistance, Phytochemicals, Plant extracts, Multitarget mechanisms, Synergy, Biofilm inhibition, Efflux pump inhibitors, Ethnopharmacology

Article History:

Received: 18-June-2025,

Revised: 30-July-2025,

Accepted: 9-August-2024,

Available online: 31-August-2025

1. INTRODUCTION: THE POST-ANTIBIOTIC ERA AND THE IMPERATIVE FOR NOVEL STRATEGIES

1.1. THE ESCALATING GLOBAL BURDEN OF ANTIMICROBIAL RESISTANCE

Antimicrobial resistance (AMR) has transitioned from a future concern to a present-day global health catastro-

phe, threatening the foundations of modern medicine [1]. The efficacy of antibiotics, a cornerstone of health-care for nearly a century, has eroded at an alarming rate, rendering common infections untreatable and routine medical procedures, such as surgery and chemotherapy. The scale of the crisis has been staggering. A landmark 2022 study published in *The Lancet* estimated that in 2019, bacterial AMR was directly responsible for at least

1.27 million deaths worldwide and was associated with nearly 5 million deaths, a toll exceeding that of HIV/AIDS or malaria [1]. Projections based on current trends are even dire, forecasting that by 2050, AMR could directly cause 1.91 million deaths annually and be associated with a broader 8.22 million deaths per year [2].

The economic burden mirrors human costs. In the United States alone, where over 2.8 million resistant infections and 35,000 deaths occur annually in the United States alone, the estimated cost of treating infections from just six common antimicrobial-resistant pathogens exceeds \$4.6 billion each year. The COVID-19 pandemic further exacerbated this trend, with data from the U.S. Centers for Disease Control and Prevention (CDC) showing a combined 20% increase in six key hospital-onset resistant infections during the pandemic compared to the preceding period [1].

This crisis did not uniformly impact the global population. While AMR is a universal threat, low- and middle-income countries (LMICs), particularly those in sub-Saharan Africa and South Asia, bear a disproportionately high burden of attributable and associated deaths [3]. Furthermore, a profound demographic shift in AMR-related mortality is currently underway. Analysis of data spanning from 1990 to 2021 reveals that while deaths in children under five years have decreased by over 50% due to improvements in infection prevention and care, deaths among adults aged 70 years and older have surged by over 80% [4]. This "silver tsunami" of AMR, driven by rapidly aging global populations and the increased vulnerability of the elderly to infection, reframes the AMR challenge. It is not solely a pharmacological problem solvable by new drugs, but a multifaceted public health issue demanding a dual strategy: robust infection prevention and control (IPC) to shield the vulnerable, coupled with the urgent development of novel therapeutic approaches [5].

The economic burden mirrors human costs. In the United States alone, where over 2.8 million resistant infections and 35,000 deaths occur annually in the United States alone, the estimated cost of treating infections from just six common antimicrobial-resistant pathogens exceeds \$4.6 billion each year. The COVID-19 pandemic further exacerbated this trend, with data from the U.S. Centers for Disease Control and Prevention (CDC) showing a combined 20% increase in six key hospital-onset resistant infections during the pandemic compared to the preceding period [1]. This crisis did not uniformly impact the global population. While AMR is a universal threat, low- and middle-income countries (LMICs), particularly those in sub-Saharan Africa and South Asia, bear a disproportionately high burden of attributable and associated deaths [3]. Furthermore, a profound demographic shift in AMR-related mortality is currently underway. Analysis of data spanning from 1990 to 2021 reveals that while deaths in children under five

years have decreased by over 50% due to improvements in infection prevention and care, deaths among adults aged 70 years and older have surged by over 80% [4]. This "silver tsunami" of AMR, driven by rapidly aging global populations and the increased vulnerability of the elderly to infection, reframes the AMR challenge. It is not solely a pharmacological problem solvable by new drugs, but a multifaceted public health issue demanding a dual strategy: robust infection prevention and control (IPC) to shield the vulnerable, coupled with the urgent development of novel therapeutic approaches [5].

The WHO Priority Pathogens List: A Call to Action In response to this escalating crisis, the World Health Organization (WHO) established strategic tools to guide global research and development (R&D) efforts. The 2024 WHO Bacterial Priority Pathogens List (BPPL) serves as a critical roadmap, updating the 2017 list to reflect evolving resistance trends and treatment gaps [6]. The BPPL categorizes 24 pathogens, spanning 15 bacterial families, into critical, high-, and medium-priority groups, thereby focusing scientific and financial resources on the most urgent threats (Table 1).

Of paramount concern are the "critical" priority pathogens, particularly gram-negative bacteria that have developed resistance to last-resort antibiotics, such as carbapenems. This group includes carbapenem-resistant *Acinetobacter baumannii*, carbapenem-resistant Enterobacteriales (CRE), and difficult-to-treat *Pseudomonas aeruginosa* [6]. The "high" priority category includes pathogens of significant global burden such as vancomycin-resistant *Enterococcus faecium* (VRE), methicillin-resistant *Staphylococcus aureus* (MRSA), and drug-resistant *Salmonella*, *Shigella*, and *Neisseria gonorrhoeae*. This list underscores the global impact of these organisms in terms of disease burden, transmissibility, and limited treatment options, acting as a direct call to action for researchers, policymakers, and pharmaceutical developers [6]. These priority pathogens will serve as primary targets for the antimicrobial strategies discussed in this review.

1.2. REGIONAL FOCUS: ANTIMICROBIAL RESISTANCE IN YEMEN

Yemen is currently facing an escalating AMR crisis exacerbated by prolonged conflict, deterioration of health-care infrastructure, and widespread misuse of antibiotics. The Global Research on Antimicrobial Resistance (GRAM) project estimated that in 2019, approximately 3,900 deaths in Yemen were directly attributable to AMR, with an additional 16,200 deaths being associated with resistant infections. These figures position Yemen among the countries with the highest AMR-related mortality rates in the Middle East [7, 8]. Surveillance conducted in

Table 1. The 2024 WHO Bacterial Priority Pathogens List (BPPL) [6]

Priority Level	Pathogen	Key Resistances of Concern
Critical	<i>Acinetobacter baumannii</i>	Carbapenem-resistant
	Enterobacterales	Carbapenem-resistant, 3rd-generation cephalosporin-resistant
	<i>Mycobacterium tuberculosis</i>	Rifampicin-resistant
	<i>Pseudomonas aeruginosa</i>	Carbapenem-resistant
High	<i>Salmonella</i> spp.	Fluoroquinolone-resistant
	<i>Shigella</i> spp.	Fluoroquinolone-resistant
	<i>Enterococcus faecium</i>	Vancomycin-resistant
	<i>Staphylococcus aureus</i>	Methicillin-resistant, Vancomycin-intermediate and resistant
	<i>Helicobacter pylori</i>	Clarithromycin-resistant
	<i>Neisseria gonorrhoeae</i>	3rd-generation cephalosporin-resistant, Fluoroquinolone-resistant
	<i>Campylobacter</i> spp.	Fluoroquinolone-resistant
Medium	Group A Streptococci	Macrolide-resistant
	<i>Streptococcus pneumoniae</i>	Penicillin-non-susceptible
	<i>Haemophilus influenzae</i>	Ampicillin-resistant
	Group B Streptococci	Penicillin-non-susceptible

major hospitals in Sana'a and Aden has revealed high resistance rates among gram-negative pathogens, including *Klebsiella pneumoniae*, *Pseudomonas aeruginosa*, and *Escherichia coli*, particularly to third-generation cephalosporins and carbapenems [9, 10]. The challenge of AMR is particularly acute in low-resource settings, such as Yemen, where fragile health systems and ongoing conflict have intensified the burden of infectious diseases. Recent epidemiological studies conducted within the country have documented a persistently high prevalence of infectious diseases across diverse population groups [11, 12, 13, 14]. Furthermore, foodborne pathogens remain a significant public health concern, as demonstrated by microbiological analyses of locally consumed products such as ice cream [15]. Additionally, zoonotic infections transmitted through contact with livestock or the consumption of unpasteurized animal products, such as brucellosis, pose a persistent threat to public health, particularly in rural and agricultural communities [16, 17]. Limited access to modern diagnostic tools and laboratory infrastructure further compounds this problem, often forcing reliance on traditional methods such as serological assays, which may lack the sensitivity and specificity required for timely and accurate detection. This diagnostic gap represents an additional challenge in identifying resistant pathogens and implementing appropriate interventions [18]. These findings highlight the critical overlap between infectious disease management, public health surveillance, and the evolving threat of antimicrobial resistance among vulnerable populations. Additional Yemeni studies have underscored the complexity and scale of the AMR problem. Howilah et al. (2024) reported a significant correlation between biofilm formation by *Streptococcus mutans* in the oral cavity and elevated resistance to antibiotics including ampicillin, tetracycline, and co-trimoxazole among adult patients in

Sana'a [19]. Similarly, Darwiesh et al. (2024) identified a strong association between biofilm production by *Klebsiella pneumoniae* and increased resistance to multiple antibiotic classes, such as penicillins, cephalosporins, carbapenems, quinolones, and aminoglycosides, suggesting that biofilm formation is a critical mechanism driving persistent resistance [20]. Additionally, Al-Yosffi et al. (2024) documented a case of *Chryseobacterium indologenes* bacteremia in a Yemeni intensive care unit patient, illustrating the emergence of multidrug-resistant opportunistic pathogens with limited therapeutic options [21].

Despite the formal adoption of Yemen's National Action Plan on AMR in 2022 [22], the effective implementation of surveillance systems, diagnostic capacity, and antibiotic stewardship programs remains insufficient. The widespread availability of antibiotics without prescription and weak regulatory oversight contribute to irrational antibiotic use [23]. Compounding these challenges, ongoing humanitarian crises, increased war-related injuries, and inadequate infection prevention and control measures have facilitated the propagation of resistant organisms. In addition, low levels of awareness and knowledge regarding many infectious diseases, modes of transmission, and effective prevention strategies, particularly among high-risk populations [24] further hinder efforts to curb the spread of antimicrobial resistance. International partnerships with organizations such as the WHO, Food and Agriculture Organization (FAO), and Fleming Fund have begun supporting efforts to strengthen Yemen's infection prevention, laboratory capabilities, and policy frameworks. Nonetheless, given the fragile state of public health infrastructure, there is an urgent need to investigate phytotherapeutic interventions, particularly those derived from locally available medicinal plants, as culturally appropriate and accessible strategies to alleviate the

growing AMR burden in Yemen.

1.3. THE LIMITATIONS OF THE SINGLE-TARGET PARADIGM IN ANTIBIOTIC DISCOVERY

The dwindling pipeline of new antibiotics is not merely a matter of insufficient R&D investment; it is also a consequence of a fundamental flaw in the prevailing philosophy of drug discovery. For decades, the dominant paradigm has been the pursuit of a "magic bullet," a highly specific compound that inhibits a single, essential bacterial protein target. This approach, driven by advances in genomics and structural biology, was predicated on the belief that high target specificity would translate into high efficacy and low host toxicity [25].

However, this strategy has proven unsustainable because of the immense genetic plasticity of bacteria. Single-target drugs present a simple evolutionary puzzle for bacterial populations. Owing to their rapid replication rates and mechanisms for genetic exchange, bacteria can swiftly develop mutations in the gene encoding the target protein, altering its structure to prevent the drug from binding [26]. This single evolutionary step can render the antibiotic ineffective, a phenomenon observed repeatedly in drugs that have a true single protein target. For instance, rifampicin (which targets RNA polymerase) and sulfonamides (which target enzymes in the folate synthesis pathway) are notorious for the rapid emergence of resistance and are therefore almost always administered in combination therapies to mitigate this vulnerability [25].

Conversely, many of the most successful and durable antibiotics in the clinical history, such as β -lactams and quinolones, rarely act on a single molecule. β -lactams typically bind to multiple penicillin-binding proteins (PBPs), while quinolones inhibit both DNA gyrase and topoisomerase IV [25]. This inherent multitargeting creates a higher evolutionary barrier; a bacterium must acquire multiple independent mutations to overcome the drug's action, which is a far less probable event [27]. The repeated failure of the single-target model is not an anomaly but an expected outcome of an arms race against a highly adaptable adversary. This realization necessitates a paradigm shift away from the "magic bullet" and toward polypharmacology, the use of agents that engage multiple targets simultaneously. This principle makes plant-derived phytochemicals uniquely compelling sources of next-generation antimicrobials.

2. METHODOLOGY

A structured and systematic literature search was used to achieve the maximum coverage of relevant research on the antimicrobial mechanisms of plant-based phyto-

chemicals. The search was conducted using electronic databases such as PubMed, Scopus, ScienceDirect, and Google Scholar to identify peer-reviewed articles published between 2000 and May 2025. The search strategy was initiated with special keys and combinations, such as phytochemicals, plant extracts, antimicrobial resistance, multitarget, efflux pump inhibition, disintegration of biofilm, and antibiotic synergy, and was refined using Boolean operators. The selection criteria included materials of most relevance, which were original research articles on experimental validation of antimicrobial activity with high-impact review articles as well as relevant clinical studies. Credible sources of information on global health include the World Health Organization (WHO), Centers for Disease Control and Prevention (CDC), and FAO, among others. Other non-English sources, unpublished data, and full text with no access were excluded. This strategy allows the incorporation of a wide range of high-quality sources, which would help in the multidisciplinary synthesis of multitarget antimicrobial strategies using phytochemicals.

3. THE ARMOURY OF PATHOGENS: A SYNOPSIS OF BACTERIAL RESISTANCE MECHANISMS

To appreciate the potential of plant-based antimicrobials, it is essential to understand the sophisticated and diverse defensive arsenal that bacteria deploy against conventional antibiotics. These mechanisms can be broadly categorized as intrinsic, acquired, or adaptive, and operate at the molecular and community levels to ensure pathogen survival [14].

3.1. INTRINSIC, ACQUIRED, AND ADAPTIVE RESISTANCE

Bacterial resistance is not a monolithic phenomenon, but arises from three distinct origins. Intrinsic resistance is a natural baseline characteristic of a bacterial species that is encoded on its chromosome. This can be due to structural features, such as the nearly impermeable outer membrane of gram-negative bacteria with its lipopolysaccharide (LPS) layer, or the inherent presence of defense systems, such as chromosomally encoded β -lactamase enzymes or efflux pumps that expel antimicrobial agents [26].

Acquired resistance, in contrast, occurs when a previously susceptible bacterium obtains new genetic material that confers resistance. This is the primary driver of the AMR crisis and occurs predominantly through horizontal gene transfer (HGT). Bacteria can acquire resistance genes through three main routes: conjugation (transfer of plasmids or other mobile genetic elements through direct cell-to-cell contact), transformation (uptake of naked DNA from the environment), and transduction (transfer of DNA

Table 2. Major Mechanisms of Bacterial Antibiotic Resistance [28]

Mechanism Category	Specific Mechanism	Molecular Action	Affected Antibiotic Classes
Enzymatic Inactivation	β -lactamase production	Hydrolyzes the amide bond in the β -lactam ring, inactivating the drug.	Penicillins, Cephalosporins, Carbapenems
	Aminoglycoside-modifying enzymes (AMEs)	Add chemical groups (acetyl, phosphate, adenyl) to the antibiotic, preventing ribosomal binding.	Aminoglycosides (e.g., Gentamicin, Amikacin)
	Chloramphenicol-acetyl-transferase (CAT)	Acetylates the hydroxyl group of chloramphenicol, preventing ribosomal binding.	Chloramphenicol
Target Modification	Alteration of Penicillin-Binding Proteins (PBPs)	Mutations in PBP genes reduce the binding affinity of β -lactam antibiotics.	β -Lactams
	Alteration of DNA Gyrase & Topoisomerase IV	Mutations in <i>gyrA</i> and <i>parC</i> genes reduce the binding affinity of quinolones.	Fluoroquinolones (e.g., Ciprofloxacin)
	Ribosomal modification (e.g., methylation)	Enzymatic modification of rRNA prevents antibiotic binding to the ribosome.	Macrolides, Lincosamides, Streptogramins (MLS)
Reduced Accumulation	Decreased permeability (Porin loss)	Reduction in the number or size of outer membrane porin channels limits drug entry.	β -Lactams, Fluoroquinolones
	Efflux pump overexpression	Actively transports antibiotics out of the cell, preventing them from reaching their target.	Tetracyclines, Macrolides, Fluoroquinolones, β -Lactams (contributes to MDR)
Collective Defense	Biofilm formation	Bacteria are encased in a protective matrix that impedes antibiotic penetration and promotes HGT.	Most antibiotic classes
	Quorum Sensing (QS)	Regulates the expression of virulence factors and biofilm formation.	Not a direct resistance mechanism, but a key regulator of virulence.

via bacteriophages) [26]. This allows the rapid spread of resistance, even across different bacterial species.

Adaptive resistance is a temporary and dynamic physiological response to antibiotic-induced stress. It does not involve permanent genetic changes, but rather transient alterations in gene expression that allow bacteria to survive in challenging environments. Key examples include the temporary modification of cell permeability or the formation of biofilms, which provide a protective niche against antimicrobial assault [28].

3.2. MOLECULAR MECHANISMS: ENZYMIC INACTIVATION, TARGET MODIFICATION, AND EFFLUX PUMPS

At the molecular level, bacteria have evolved a toolkit for highly effective strategies to neutralize antibiotics (Table 2). These mechanisms form a multilayered defense system, and a single pathogen can often employ several simultaneously, creating a formidable challenge for single-target drugs.

3.2.1. Enzymatic Inactivation

One of the most common strategies is the production of enzymes that chemically modify or destroy the antibiotic molecules. The most well-known examples are β -lactamases, which hydrolyze the β -lactam ring and are

central to the activity of penicillins, cephalosporins, and carbapenems. The proliferation of extended-spectrum β -lactamases (ESBLs) and carbapenemases has rendered many of these critical antibiotics ineffective against key Gram-negative pathogens [29]. Other examples include aminoglycoside-modifying enzymes (AMEs), which add chemical groups to aminoglycoside antibiotics, preventing them from binding to their ribosomal target, and chloramphenicol-acetyl-transferases, which acetylate chloramphenicol, rendering it inert [30].

3.2.2. Target Modification or Protection

Bacteria can also evade antibiotics by altering the target site of the drug. By modifying the target molecule, the bacteria reduce the binding affinity of the drug, making it less effective. This can occur through mutations in genes encoding the target. Notable examples include alterations in penicillin-binding proteins (PBPs) that confer resistance to β -lactams, mutations in DNA gyrase and topoisomerase IV enzymes that confer resistance to quinolones, and modifications to the 30S or 50S ribosomal subunits that confer resistance to protein synthesis inhibitors such as tetracyclines and macrolides [26].

Reduced Permeability and Active Efflux A third major strategy is to prevent the antibiotic from reaching its intracellular targets in the first place. In Gram-negative bacteria, this can be achieved by reducing the number

or size of the porin channels in the outer membrane, thereby limiting drug entry [30]. A more universal and powerful mechanism involves the use of efflux pumps. These membrane-spanning protein complexes actively transport a wide range of toxic compounds, including antibiotics, out of bacterial cells. Overexpression of efflux pumps is a primary cause of multidrug resistance (MDR) because a single pump can often recognize and expel multiple classes of antibiotics, effectively providing broad-spectrum protection for the bacterium [31, 32].

3.3. COLLECTIVE DEFENSE: BIOFILM FORMATION AND QUORUM SENSING

In addition to individual cellular defenses, bacteria employ community-level strategies to enhance their survival. Biofilm formation is a critical virulence factor in which bacteria attach to a surface and encase themselves in a self-produced matrix of extracellular polymeric substances (EPS) [28]. This matrix acts as a physical shield, preventing the penetration of antibiotics into the cells. The altered metabolic state of bacteria in biofilms also contributes to their tolerance. Furthermore, the close proximity of cells in a biofilm creates a hotspot for HGT, accelerating the spread of resistance genes [31]. Coordination of biofilm formation and other collective behaviors, such as the production of virulence factors, is often regulated by quorum sensing (QS). This is a sophisticated cell-to-cell communication system in which bacteria produce and detect small signaling molecules called autoinducers. As bacterial population density increases, the concentration of these autoinducers increases, triggering a coordinated change in gene expression across the entire community [32]. By targeting QS, it is possible to disrupt these collective pathogenic behaviors without directly killing the bacteria, a strategy that may exert less selective pressure for resistance.

4. RETURNING TO OUR ROOTS: ETHNOMEDICINE AS A RESERVOIR FOR ANTIMICROBIAL DISCOVERY

In the face of the modern AMR crisis, one of the most promising avenues for discovering new therapeutics involves examining the most ancient form of medicine. For millennia, long before the advent of synthetic chemistry, humanity relied exclusively on the natural world, primarily plants, to treat ailments [32]. This vast, time-tested repository of traditional knowledge, often referred to as ethnomedicine, provides a powerful and targeted starting point for contemporary drug discovery [33].

4.1. A HISTORICAL PERSPECTIVE ON PHYTOTHERAPY IN TRADITIONAL MEDICINE SYSTEMS

The use of medicinal plants is not a recent trend but a practice as old as humanity itself. Fossil records suggest that neanderthals used medicinal plants as far back as 60,000 years ago. Virtually every ancient civilization has developed a sophisticated pharmacopeia based on its local flora. In India, the Ayurvedic system has documented the healing properties of plants for over 5,000 years, celebrating herbs such as turmeric (*Curcuma longa*) for their anti-inflammatory properties [33, 34]. In China, the "Pen T'Sao" pharmacopeia, attributed to Emperor Shen Nung around 2500 BC, cataloged 365 medicinal plant parts, many of which, such as cinnamon and ginseng, are still in use. Similarly, ancient Egyptian, Greek, and Roman texts, including the works of Hippocrates and Dioscorides, detailed the use of hundreds of plants for specific physiological actions, from garlic for intestinal parasites to willow bark as an antipyretic [32].

In the Arabian Peninsula, particularly in Yemen and Oman, *Boswellia sacra* commonly known as frankincense, has played a central role in traditional medicine for centuries. Known locally as "luban," this resin is harvested from the *Boswellia* tree and used for its antimicrobial, anti-inflammatory, and wound healing properties. In Yemen, traditional healers have long used frankincense preparations for treating infections, respiratory conditions, and gastrointestinal ailments. Modern scientific reviews affirm the pharmacological potential of *Boswellia sacra*, supporting its relevance as a bioactive natural product worthy of further research and integration into modern phytomedicine strategies [35].

This global reliance on phytotherapy underscores a critical point: traditional medicine systems represent a multi-millennial, human-based "clinical trial" [34]. Through countless generations of trial, error, and meticulous observation, traditional healers effectively pre-screened a vast library of natural compounds for bioactivity and relative safety [36]. This knowledge, passed down through oral traditions and written texts, significantly derisks the initial stages of modern drug discovery. Instead of relying on random screening of millions of synthetic compounds, costly and often fruitless endeavors can adopt a targeted approach, focusing on plants with a long and documented history of use for treating conditions with symptoms analogous to microbial infections, such as fever, wounds, and dysentery [33]. The World Health Organization acknowledges this profound legacy, estimating that even today, up to 80% of the world's population relies on traditional medicine for their primary healthcare needs [34].

4.2. FROM FOLK REMEDY TO MODERN PHARMACEUTICAL: THE ETHNOBOTANICAL DRUG DISCOVERY PIPELINE

The transition from a traditional remedy to a modern approved pharmaceutical is a journey for scientific validation. This process, often termed "reverse pharmacology" or ethnobotanical drug discovery, begins with the knowledge held in traditional systems and applies modern scientific methods to isolate active compounds, elucidate their mechanisms of action, and validate their efficacy and safety [37]. This approach has yielded some of the most important drugs in the medical history.

Therefore, the discovery of artemisinin is essential. Guided by a 1,700-year-old text from Traditional Chinese Medicine describing the use of sweet wormwood (*Artemisia annua*) to treat fevers, Chinese scientist Tu Youyou and her team successfully isolated this active compound in the 1970s. This discovery revolutionized the treatment of malaria, particularly chloroquine-resistant strains, and earned her the 2015 Nobel Prize in Physiology or Medicine [34]. Other landmark drugs derived from ethnomedical leads include the following.

Quinine, the first effective treatment for malaria, was isolated from the bark of the *Cinchona* tree, which has been used for centuries by the indigenous peoples of Peru to treat fevers [33].

Aspirin, the world's most widely used anti-inflammatory drug, can be traced back to salicin from willow (*Salix*) bark, a remedy used by ancient Greeks and Native Americans for pain and fever [33].

Morphine, the archetypal opioid analgesic, was the first pharmacologically active compound to be isolated from a plant (*Papaver somniferum*) in 1805, marking the birth of modern phytochemistry [34].

Vinblastine and vincristine, two vital anticancer drugs, were discovered in Madagascar periwinkle (*Catharanthus roseus*), a plant traditionally used to treat diabetes [33].

Currently, this pipeline is being accelerated by modern technologies. High-throughput screening, metabolomics, and other "omics" technologies allow for the rapid analysis of plant extracts and identification of bioactive compounds and their molecular targets, bridging the gap between ancient wisdom and cutting-edge pharmaceutical science [37]. By starting with the "evolutionarily-validated" library provided by ethnomedicine, researchers can significantly increase the probability of success while reducing the time and expense of the initial drug discovery phases.

5. THE PHYTOCHEMICAL ARSENAL: MULTITARGET ACTION AGAINST DRUG-RESISTANT PATHOGENS

The fundamental reason that plant extracts hold such promise in the fight against AMR lies in their inherent

chemical complexity and the resulting polypharmacology. Unlike single-molecule antibiotics, which exert a focused pressure on one bacterial target, plant extracts unleash a coordinated, multi-pronged assault that attacks pathogens on numerous fronts simultaneously. This strategy is not a random barrage, but a sophisticated offensive that is difficult for bacteria to counter, thereby delaying the onset of resistance [25].

5.1. THE RATIONALE FOR POLYPHARMACOLOGY: WHY MULTITARGETING DELAYS RESISTANCE

Polypharmacology is the concept of a single drug interacting with multiple biological targets. The primary advantage of this approach in antimicrobial therapy is the significantly slower rate of development of resistance. For a bacterium to overcome a single-target drug, it often needs to acquire only a single, advantageous mutation in the gene encoding that targets a relatively common and rapid evolutionary event [25]. However, to overcome a multitarget agent that simultaneously inhibits targets A, B, and C, the bacterium needs to acquire resistance-conferring mutations for all three targets simultaneously. The probability of three independent beneficial mutations arising and being selected simultaneously is exponentially lower than that for a single mutation [27]. This creates a much higher evolutionary hurdle for the pathogens.

This principle has been validated based on the history of antibiotics. The most clinically successful and durable drugs, such as β -lactams and quinolones, are now understood to be intrinsically multi-target agents [25]. Plant extracts are the epitome of this multi-target strategy. A single extract contains a complex mixture of hundreds of phytochemicals from various chemical classes (e.g., alkaloids, flavonoids, and terpenoids), each with potentially different mechanisms of action. These compounds can work synergistically, creating a combined effect greater than the sum of their parts [38]. This complex chemical matrix presents an overwhelming challenge to a pathogen's adaptive capabilities, representing a "shock and awe" campaign rather than the "surgical strike" of a conventional antibiotic.

5.2. A PLETHORA OF MECHANISMS: HOW PLANT EXTRACTS OVERWHELM BACTERIAL DEFENSES

The antimicrobial efficacy of plant extracts stems from their ability to attack pathogens at structural, genetic, metabolic, and communication levels (Figure 1). This multifaceted assault creates a state of systemic chaos that is difficult for a bacterium to defend.

5.2.1. Cell Envelope Disruption: The First Line of Attack

The bacterial cell envelope, comprising the cell wall and cytoplasmic membrane, is the first point of contact for antimicrobial agents and is a primary target for many phytochemicals. Lipophilic compounds, particularly terpenoids and phenols found in essential oils, can readily partition into the lipid bilayer of bacterial membranes. This physical intercalation disrupts the structural integrity of the membrane, thereby increasing its fluidity and permeability. The consequences are catastrophic for the bacterium: leakage of essential intracellular contents such as ions (e.g., K⁺), ATP, proteins, and nucleic acids; dissipation of the proton motive force required for ATP synthesis and active transport; and ultimately, cell lysis and death [39]. This mechanism is fundamentally "resistance-agnostic"; it is far more difficult for a bacterium to evolve resistance by fundamentally altering the biophysical properties of its entire membrane than by mutating a single target enzyme.

5.2.2. Inhibition of Essential Macromolecular Synthesis (Nucleic Acids, Proteins)

Many phytochemicals penetrate cells and interfere with the most fundamental processes of life, including the synthesis of DNA, RNA, and proteins. Certain flavonoids and alkaloids, including DNA gyrase and topoisomerase IV, are potent inhibitors of the bacterial topoisomerases. These enzymes are essential for managing DNA supercoiling during replication and transcription [40]. By inhibiting these enzymes, phytochemicals can cause irreparable DNA damage and halt cell division. Other compounds, such as the alkaloid berberine, can directly intercalate into the DNA structure, physically blocking replication and transcription [41]. Furthermore, some phytochemicals can bind to bacterial ribosomal subunits, inhibiting protein synthesis and bringing cellular functions to a standstill [30].

5.2.3. Metabolic Sabotage and Induction of Oxidative Stress

Phytochemicals can also wage war on bacterial metabolism. Some compounds, such as luteolin, have been shown to inhibit key metabolic enzymes and reduce the intracellular production of ATP, effectively starving cells of energy [42]. An even more potent strategy is induction of oxidative stress. Certain phytochemicals can trigger the production of highly destructive reactive oxygen species (ROS), such as superoxide anions and hydroxyl radicals, within bacterial cells [43]. These ROS cause widespread, indiscriminate damage to all major classes of macromolecules, peroxidizing lipids in the membrane, carbonylating proteins, and causing double-stranded breaks in DNA far exceeding the capacity of the bacterium's natural antioxidant defenses, leading to rapid cell death [44].

5.2.4. Dismantling Bacterial Communication and Defenses: Inhibition of Quorum Sensing, Biofilms, and Efflux Pumps

One of the most sophisticated aspects of phytochemical action is the ability to function as "resistance breakers" or "anti-virulence" agents. Rather than killing the bacteria directly, these compounds disarm their defensive capabilities. Many phytochemicals, including alkaloids like piperine, are potent efflux pump inhibitors (EPIs) [45]. By blocking these pumps, they prevent the bacterium from expelling conventional antibiotics, thereby restoring the efficacy of drugs previously resistant to the pathogen [41].

Other phytochemicals interfere with quorum sensing (QS), the cell-to-cell communication system bacteria use to coordinate group behaviors [46]. By blocking QS signals, these compounds can prevent a bacterial population from launching a coordinated attack, expressing virulence factors, or forming protective biofilms [47]. Finally, many plant extracts directly inhibit biofilm formation or disrupt established biofilms, exposing now-vulnerable planktonic bacteria to the host immune system and conventional antibiotics [28]. This multifaceted ability to kill pathogens and dismantle their defenses makes plant extracts a uniquely powerful tool in the AMR arsenal.

6. A CLASS-BY-CLASS ANALYSIS OF ANTIMICROBIAL PHYTOCHEMICALS

Plant extracts have potent antimicrobial activity owing to their rich and diverse chemistries. Although a single extract contains hundreds of compounds, research has focused on several major classes of secondary metabolites that are consistently associated with antimicrobial effects. This section details the mechanisms of action, target pathogens, and sources of key phytochemicals, illustrating the polypharmacological principles previously outlined. The data are presented in Table 3.

6.1. ALKALOIDS: NITROGENOUS COMPOUNDS WITH POTENT ACTIVITY

Alkaloids are a large and structurally diverse group of naturally occurring nitrogen-containing compounds that are widely recognized for their potent pharmacological effects [48]. Their antimicrobial mechanisms are pleiotropic, ranging from disruption of cell structures to inhibition of fundamental life processes and resistance mechanisms [48].

6.1.1. Berberine

This well-studied isoquinoline alkaloid, primarily sourced from plants of the *Berberis* genus (e.g., *Coptis chinensis* or goldthread), exhibits broad-spectrum activity. Their mechanisms of action are remarkably diverse. It disrupts the integrity of both bacterial and fungal cell membranes

and walls [49]. In fungi such as *Candida albicans* and *Cryptococcus neoformans*, berberine inhibits CYP51, which is crucial for the synthesis of ergosterol, a vital component of fungal cell membranes [50, 49]. It also intercalates with bacterial DNA and inhibits FtsZ protein, a key player in bacterial cell division [41]. Furthermore, berberine can modulate host responses by activating antioxidant pathways, such as Nrf2 and AMPK, and is a potent inhibitor of biofilm formation in both bacteria (*S. aureus*) and fungi [43].

6.1.2. *Palmatine*

A protoberberine alkaloid structurally related to berberine, palmatine, is found in plants such as *Phellodendron amurense* and *Corydalis yanhusuo* [51]. Although it has direct antibacterial activity, particularly against gram-positive bacteria, one of its most significant roles is as a resistance-modifying agent. Studies have shown that palmatine can synergize with azole antifungal drugs against resistant *Candida* species by inhibiting their efflux pumps [52]. This prevents fungi from expelling the drug and restoring its efficacy. Palmatine is used clinically for various infections, including those of the gastrointestinal and urinary tracts [51].

6.1.3. *Piperine*

This alkaloid is the primary bioactive component of black pepper (*Piper nigrum*) [53]. Piperine's main strength is not as a direct antimicrobial, but as a powerful adjuvant and bioenhancer [54]. The principal mechanism is the inhibition of bacterial efflux pumps, such as the NorA pump in *S. aureus*, which is responsible for resistance to several antibiotics [55]. By blocking these pumps, piperine restores the susceptibility of bacteria resistant to conventional drugs such as rifampicin and tetracycline, demonstrating potent synergistic effects against pathogens such as *S. aureus* and *P. aeruginosa* [54]. It also contributes to membrane destabilization [56].

6.2. FLAVONOIDS: POLYPHENOLIC POWER-HOUSES

Flavonoids are a ubiquitous class of polyphenolic compounds found throughout the plant kingdom, and are known for their antioxidant properties and diverse antimicrobial mechanisms [40].

6.2.1. *Quercetin*

One of the most abundant dietary flavonoids found in onions, apples, and berries, quercetin, exhibits a wide range of antibacterial activity [57]. It disrupts the cell wall and membrane integrity of both Gram-positive and Gram-negative bacteria [58]. It also inhibits essential bacterial enzymes, including DNA gyrase and MurB, which are involved in the early stages of peptidoglycan synthesis [40]. Quercetin can also suppress the expression of virulence

factors and inhibit biofilm formation [58]. A key synergistic interaction has been demonstrated with tetracycline against MDR *E. coli*, in which quercetin increases bacterial membrane permeability, allowing enhanced entry and activity of the antibiotic [59].

6.2.2. *Kaempferol*

Flavonols, found in foods such as tea, kale, and saffron, possess broad-spectrum antimicrobial activity against bacteria, fungi, and protozoa. Its mechanisms include severe cell membrane disruption, leading to DNA fragmentation, inhibition of bacterial fatty acid synthesis via the FabG enzyme, and inhibition of both DNA gyrase and helicases. It is effective against clinically important pathogens, such as MRSA, *P. aeruginosa*, *Candida* spp., and even protozoan parasites, such as *Plasmodium* and *Leishmania* [60].

6.2.3. *Catechins*

These flavonoids are the major polyphenolic components of green tea (*Camellia sinensis*), with (-)-epigallocatechin-3-gallate (EGCG) being the most abundant and active [61]. The antimicrobial actions of catechins are multifaceted, including disruption of the cytoplasmic membrane, inhibition of intracellular enzymes, such as DNA gyrase, generation of oxidative stress through the production of hydrogen peroxide, and potent inhibition of virulence factors and biofilm formation [62].

6.2.4. *Luteolin*

A flavone present in plants, such as *Lophatherum gracile* luteolin, demonstrates a sophisticated, multitarget attack, particularly against MDR *E. coli* [63]. It damages the cell wall and membrane, inhibits DNA topoisomerases I and II, reduces cellular ATP synthesis, and interferes with critical metabolic pathways (e.g., riboflavin and glycerophospholipid metabolism). Critically, it also downregulates the expression of key resistance genes, including those conferring resistance to sulfonamides (*sul2*) and quinolones (*gyrA*) [42].

6.3. TERPENOIDS AND ESSENTIAL OILS: VOLATILE BUT VIOLENT

Terpenoids are a vast and diverse class of organic hydrocarbons produced by plants and are the primary constituents of essential oils (EOs) [64]. Their lipophilic nature makes them particularly effective in disrupting bacterial membranes [39].

6.3.1. *Thymol & Carvacrol*:

These isomeric phenolic monoterpenes are the main active components of thyme (*Thymus vulgaris*) and oregano (*Origanum vulgare*) EOs [65]. Their primary mechanism is the potent disruption of the cytoplasmic

membrane, causing depolarization, increased permeability, and leakage of cellular contents [66]. They also inhibit membrane-bound ATPases and efflux pumps, contributing to their broad-spectrum activity against gram-positive (*S. aureus*) and gram-negative (*E. coli*, *P. aeruginosa*, *Klebsiella*) bacteria as well as fungi [67]. They are well documented to act synergistically with conventional antibiotics [68].

6.3.2. Eugenol:

Eugenol is a major component of clove (*Syzygium aromaticum*) oil [69]. Its mechanisms include disruption of the cytoplasmic membrane, inhibition of biofilm formation, and interference with quorum sensing pathways, leading to the downregulation of virulence factor expression in pathogens such as *S. aureus*, *H. pylori*, and *L. monocytogenes* [70].

6.3.3. Tea Tree Oil:

This complex EO, derived from the Australian plant *Melaleuca alternifolia*, contains over 100 components, with terpinen-4-ol, α -terpineol, and 1,8-cineole being the most active [71]. TTO's primary mode of action of TTO is to compromise the cytoplasmic membrane, which leads to the leakage of potassium ions and nucleic acids, inhibition of cellular respiration, and ultimately, cell lysis. It has broad-spectrum activity against *S. aureus*, *E. coli*, and *C. albicans* [72].

6.4. PHENOLIC ACIDS AND TANNINS: ASTRINGENT ACTION AGAINST MICROBES

This group includes simple phenolic acids and their larger polymers, tannins, which are known for their protein-binding and astringent properties [73].

6.4.1. Gallic Acid

A simple hydroxybenzoic acid, gallic acid, induces pore formation in the bacterial membrane, leading to increased permeability and leakage. It can also cause DNA damage and inactivate intracellular proteins [74]. Under certain conditions, it can promote ROS generation by ROS adding oxidative stress to its antimicrobial effects [75]. It is active against a range of pathogens, including *E. coli* and *S. aureus* [76].

6.4.2. Tannic Acid

A large polyphenol, tannic acid, is particularly noted for its potent antibiofilm activity [77]. MRSA inhibits biofilm formation by interfering with the integrity of cell wall peptidoglycan and disrupting key metabolic pathways, including the citric acid cycle and biosynthesis of essential amino acids such as histidine and arginine [78]. It also functions as an anti-adhesion agent, preventing bacteria from attaching to surfaces, which is the first step in biofilm formation [79].

6.5. SAPONINS: DETERGENT-LIKE DISRUPTION OF PATHOGENS

Saponins are amphiphilic glycosides that possess soap-like or detergent-like properties and exert antimicrobial action [80].

Mechanism: The primary mechanism of saponins is membrane disruption [80]. Their amphiphilic structure allows them to insert into lipid membranes, often interacting with sterols (such as cholesterol in animal cells or ergosterol in fungal cells), which leads to pore formation, loss of membrane integrity, and cell lysis [80]. This membrane-permeabilizing effect also makes them excellent synergistic agents because they can facilitate the entry of other antimicrobial compounds into the cell [81].

Examples: **Digitonin**, a steroid saponin from the foxglove plant (*Digitalis purpurea*), is a classic example of a synergistic saponin that enhances the activity of alkaloids against protozoa by increasing membrane permeability [82]. Saponins from the soapbark tree (*Quillaja saponaria*) also exhibit direct antimicrobial and anti-biofilm activities and can act synergistically with disinfectants against pathogens, such as *E. coli* [83].

7. ENHANCING EFFICACY THROUGH SYNERGY: THE POWER OF COMBINATION

One of the most important attributes of phytochemicals is their ability to act synergistically with conventional antibiotics and other phytochemicals (Table 4). This synergy enhances antimicrobial efficacy, often at lower concentrations, which can reduce toxicity and slow the development of resistance. This approach represents a paradigm shift from simply seeking new bactericidal agents to intelligently disarming bacterial defenses [86].

7.1. PHYTOCHEMICAL-ANTIBIOTIC SYNERGY: REVIVING OBSOLETE DRUGS

A critical strategy in the fight against AMR is the use of phytochemicals as adjuvants or "resistance breakers" to restore the activity of existing antibiotics [45]. Many bacterial strains are resistant not because the antibiotic is inherently ineffective but because they have developed specific defense mechanisms, such as enzymatic degradation or active efflux. Phytochemicals can neutralize these defenses, rendering the pathogen susceptible.

The mechanism of this synergy is often the inhibition of resistance determinants. For example, alkaloids such as piperine and reserpine are potent inhibitors of bacterial efflux pumps [86]. When co-administered with an antibiotic that is a substrate for these pumps (e.g., tetracycline and rifampicin), piperine blocks the pump, causing the antibiotic to accumulate to toxic levels inside the bacterial cell and exert its effect. This has been

Table 3. Antimicrobial Mechanisms of Major Phytochemicals and Plant Extracts

Phytochemical Class	Compound/Extract	Common Source(s)	Target Pathogens (especially resistant strains)	Known Mechanisms of Action	Reference
Alkaloids	Berberine	<i>Berberis</i> spp. (<i>Coptis chinensis</i>)	MRSA, <i>C. albicans</i> , <i>C. neoformans</i> , <i>E. coli</i>	Membrane/wall disruption, Fungal CYP51 inhibition, DNA intercalation, FtsZ protein inhibition, Biofilm disruption, Host antioxidant pathway activation	[49]
	Palmatine	<i>Phellodendron</i> , <i>Coptis</i> spp.	<i>S. aureus</i> , <i>Candida</i> spp. (azole-resistant)	Efflux pump inhibition (synergy with azoles), Direct antibacterial action (Gram-positive>Gram-negative), DNA toxicity	[84]
	Piperine	<i>Piper nigrum</i> (Black Pepper)	<i>S. aureus</i> (MRSA), <i>P. aeruginosa</i>	Efflux pump inhibition (NorA), Membrane destabilization, Bioavailability enhancement of other drugs	[55]
Flavonoids	Quercetin	Onions, apples, berries	MDR <i>E. coli</i> S., <i>aureus</i> , <i>P. aeruginosa</i>	Membrane/wall disruption, DNA gyrase inhibition, Biofilm inhibition, Synergy with antibiotics (e.g., tetracycline)	[58]
	Kaempferol	Tea, saffron, kale	<i>S. aureus</i> , <i>E. coli</i> , <i>P. aeruginosa</i> , <i>Candida</i> , <i>Plasmodium</i>	Membrane disruption, DNA fragmentation, Inhibition of fatty acid synthesis (FabG), DNA gyrase & helicase inhibition	[60]
	Catechins (EGCG)	<i>Camellia sinensis</i> (Green Tea)	<i>S. aureus</i> , <i>E. coli</i> , <i>S. mutans</i>	Membrane disruption, DNA gyrase inhibition, ROS generation, Biofilm/virulence inhibition	[85]
	Luteolin	<i>Lophatherum gracile</i>	MDR <i>E.coli</i>	Membrane/wall damage, Topoisomerase I/II inhibition, ATP synthesis reduction, Downregulation of resistance genes (<i>sul2</i> , <i>gyrA</i>)	[63]
Terpenoids/EOs	Thymol & Carvacrol	<i>Thymus vulgaris</i> (Thyme), <i>Origanum vulgare</i> (Oregano)	MRSA, <i>E. coli</i> , <i>P. aeruginosa</i> , <i>Klebsiella</i> , <i>Candida</i>	Potent membrane disruption & depolarization, ATPase & efflux pump inhibition, Synergy with antibiotics	[68]
	Eugenol	<i>Syzygium aromaticum</i> (Clove)	MRSA, <i>H. pylori</i> , <i>L. monocytogenes</i>	Membrane disruption, Biofilm inhibition, Quorum sensing interference, Downregulation of virulence genes	[69]
	Tea Tree Oil (TTO)	<i>Melaleuca alternifolia</i>	<i>S. aureus</i> , <i>E. coli</i> , <i>C. albicans</i>	Membrane disruption, Leakage of K ⁺ and nucleic acids, Inhibition of respiration	[72]
Phenolics	Tannic Acid	Galls, grape seeds, oak	MRSA, <i>P. aeruginosa</i>	Potent anti-biofilm activity, Peptidoglycan binding, Inhibition of metabolic pathways, Anti-adhesion	[77]
	Gallic Acid	Various fruits and plants	<i>E. coli</i> , <i>P. aeruginosa</i> , <i>S. aureus</i>	Membrane pore formation, DNA damage, Protein inactivation, ROS generation	[74]
Saponins	Digitonin	<i>Digitalis purpurea</i> (Foxglove)	<i>Trypanosoma brucei</i>	Cholesterol-dependent membrane permeabilization, Potent synergistic agent (facilitates drug uptake)	[82]

demonstrated to restore the activity of rifampicin and tetracycline against resistant *S. aureus* and *P. aeruginosa* [54].

Another synergistic mechanism is the increase in membrane permeability. The combination of **quercetin** and tetracycline was highly effective against MDR *E. coli*. Quercetin disrupts the bacterial cell envelope, making it more permeable and allowing tetracycline to flood the cell, overwhelming its defenses [59]. This strategy of using phytochemicals to prevent resistance allows for the repurposing of our existing, well-characterized, and clinically approved antibiotic arsenal, a far more rapid and cost-effective approach than developing entirely new drugs from scratch.

7.2. PHYTOCHEMICAL-PHYTOCHEMICAL SYNERGY:

The "Entourage Effect" in Plant Extracts The observation that a crude plant extract is often more biologically active than any of its isolated components alone indicates the existence of synergy within the extract [38]. This phenomenon, sometimes called the "entourage effect," arises from the complex interplay between hundreds of different phytochemicals. Different compounds can attack different targets, or one compound can enhance the bioavailability or activity of another compound. This internal synergy has been demonstrated in several studies. For instance, combinations of triterpenoids (ursolic acid and oleanolic acid) and a flavonoid (dihydromyricetin) were found to have greater antibacterial effects against both Gram-positive and Gram-negative bacteria than any of the compounds used alone [87]. A classic example of cross-class synergy is between saponins and alkaloids. Steroidal saponin digitonin is a potent membrane-permeabilizing agent. When combined with polar alkaloids such as berberine or vinblastine, which may have difficulty crossing the cell membrane on their own, digitonin facilitates their uptake, leading to a dramatic enhancement in their trypanocidal activity [81]. Even within the same class, combinations may be superior. A mixture of the terpenes (-)-trans-caryophyllene and linalool was shown to be more effective at inhibiting *S. aureus* biofilm formation than either terpene alone [86]. This inherent synergy is the foundation of traditional herbal medicine, which has historically relied on whole-plant preparations rather than isolated chemicals, and underscores the profound potential of developing standardized, multi-component botanical drugs [88].

7.3. PHYTOCHEMICAL-PHYTOCHEMICAL SYNERGY: THE "ENTOURAGE EFFECT" IN PLANT EXTRACTS

The observation that a crude plant extract is often more biologically active than any of its isolated components

alone indicates the existence of synergy within the extract [38]. This phenomenon, sometimes called the "entourage effect," arises from the complex interplay between hundreds of different phytochemicals. Different compounds can attack different targets, or one compound can enhance the bioavailability or activity of another compound.

This internal synergy has been demonstrated in several studies. For instance, combinations of triterpenoids (ursolic acid and oleanolic acid) and a flavonoid (dihydromyricetin) were found to have greater antibacterial effects against both Gram-positive and Gram-negative bacteria than any of the compounds used alone [87]. A classic example of cross-class synergy is between saponins and alkaloids. Steroidal saponin digitonin is a potent membrane-permeabilizing agent. When combined with polar alkaloids such as berberine or vinblastine, which may have difficulty crossing the cell membrane on their own, digitonin facilitates their uptake, leading to a dramatic enhancement in their trypanocidal activity [81]. Even within the same class, combinations may be superior. A mixture of the terpenes (-)-trans-caryophyllene and linalool was shown to be more effective at inhibiting *S. aureus* biofilm formation than either terpene alone [86]. This inherent synergy is the foundation of traditional herbal medicine, which has historically relied on whole-plant preparations rather than isolated chemicals, and underscores the profound potential of developing standardized, multi-component botanical drugs [88].

8. BRIDGING THE GAP FROM LAB TO CLINIC: CHALLENGES AND FUTURE DIRECTIONS

Despite the immense therapeutic potential of antimicrobial phytochemicals, their translation from laboratory findings to approved clinical treatments is fraught with significant scientific, regulatory, and commercial challenges. Overcoming these hurdles is essential for unlocking the full potential of phytotherapy in the modern medical landscape [91].

8.1. THE STANDARDIZATION DILEMMA:ENSURING CONSISTENCY IN COMPLEX MIXTURES

The rich chemical complexity of plant extracts represents both their greatest therapeutic potential and a critical challenge to their clinical development [92]. Modern pharmaceutical practices demand strict control over the identity, purity, potency, and quality of drug formulations, and achieving consistency with botanical products is inherently difficult. Unlike synthetic single-molecule drugs, which are easier to replicate and standardize, plant-derived extracts are influenced by a wide range of variables, including plant genotype, soil composition, climate,

Table 4. Examples of Synergistic Antimicrobial Interactions

Phytochemicals	Partner	Mechanism of Synergy	Target Pathogen(s)	References
Quercetin	Tetracycline	Increased membrane permeability, disruption of cell envelope	MDR <i>Escherichia coli</i>	[59]
Piperine	Rifampicin	Efflux pump inhibition (NorA)	<i>Staphylococcus aureus</i> , <i>Pseudomonas aeruginosa</i>	[54]
Palmatine	Fluconazole	Efflux pump inhibition	Azole-resistant <i>Candida</i> spp.	[52]
Carvacrol	Erythromycin	Inhibition of inducible resistance mechanisms (potential)	Erythromycin-resistant Group A Streptococci	[89]
Thymol	Gentamicin	Facilitating antibiotic action (mechanism under investigation)	<i>Staphylococcus aureus</i> (high priority pathogen)	[90]
Ursolic Acid, Oleanolic Acid	Dihydromyricetin	Combined action enhancing antibacterial potential	<i>S. aureus</i> , <i>S. epidermidis</i> , <i>E. coli</i> , <i>P. hauseri</i>	[87]
Digitonin	Vinblastine	Increased membrane permeability, enhanced drug uptake	<i>Trypanosoma brucei</i>	[81]

altitude, harvesting time, and post-harvest processing techniques, which significantly affect their phytochemical profiles [93].

This natural variability leads to considerable fluctuations in the biological activity between batches, making it difficult to ensure reproducible clinical efficacy. Traditional quality control strategies that rely on quantifying one or two "marker compounds" are inadequate when the therapeutic effects stem from the synergistic action of dozens or even hundreds of bioactive constituents [87]. Therefore, a paradigm shift in quality assurance is necessary. Instead of focusing solely on marker quantification, researchers and manufacturers must adopt advanced analytical tools such as High-Performance Liquid Chromatography (HPLC), Gas Chromatography-Mass Spectrometry (GC-MS), and Nuclear Magnetic Resonance (NMR) spectroscopy. These technologies enable the creation of comprehensive chemical fingerprints that reflect the entire spectrum of phytochemicals within an extract, ensuring batch-to-batch consistency, and enhancing the reproducibility of therapeutic outcomes [94].

8.2. PHARMACOKINETICS AND TOXICITY: THE BIOAVAILABILITY HURDLE

The success of a compound in a petri dish does not guarantee its success in a patient. A major obstacle for many promising phytochemicals is their poor pharmacokinetics, particularly their low bioavailability [95]. Bioavailability refers to the fraction of an administered dose that reaches systemic circulation and is available to exert its effect at the target site. Many phytochemicals, especially large polyphenols, are poorly absorbed from the gastrointestinal tract, are unstable in the acidic

environment of the gut, or are rapidly metabolized by the liver (first-pass effect). Consequently, even if a compound shows potent antimicrobial activity *in vitro*, it may fail in clinical trials because it never reaches the site of infection at therapeutically relevant concentrations [95]. Furthermore, although plant-based medicines are often perceived as safer than synthetic drugs, they are not without risks. High doses of certain phytochemicals can be toxic, and extracts can contain undesirable compounds or interact with conventional medications, leading to adverse effects [96].

Addressing these challenges requires innovative formulations and delivery strategies. Nanotechnology offers a promising solution to this problem. Encapsulating phytochemicals in nanoparticles (e.g., liposomes and polymeric nanoparticles) can protect them from degradation in the gut, improve their solubility, control their release, and enhance their absorption across the intestinal wall, thereby significantly boosting their bioavailability and therapeutic efficacy [97].

8.3. NAVIGATING THE REGULATORY LANDSCAPE FOR BOTANICAL DRUGS

The path to regulatory approval of botanical drugs is complex and often ill-defined, representing a significant barrier to their development. In the United States, a critical distinction exists between a "dietary supplement" and a "drug." A product can be marketed as a dietary supplement without prior FDA approval, but it cannot make claims to treat, cure, or prevent a disease [98]. To be approved as a prescription antimicrobial, a botanical product must undergo the same rigorous Investigational New Drug (IND) and New Drug Application (NDA) pro-

cesses as any synthetic compound, requiring extensive preclinical and clinical trials to prove its safety and efficacy [98].

This process poses a fundamental paradox in botanical medicine. Regulatory frameworks are designed for single-molecule entities, requiring precise identification and characterization of the active pharmaceutical ingredient (API). For a complex plant extract where the "API" is the synergistic mixture itself, this requirement is often impossible to meet [99]. This misalignment between the nature of botanical medicine and the structure of regulatory evaluation is the primary reason why only two botanical drugs have received full FDA approval [100]. While the European Medicines Agency (EMA) offers a pathway for Traditional Herbal Registration (THR), it is generally limited to products for minor ailments with a very long history of safe use, which may not be applicable to novel treatments for serious drug-resistant infections [101].

8.4. THE PATH FORWARD: INTEGRATING ADVANCED ANALYTICS, NANOTECHNOLOGY, AND RIGOROUS CLINICAL TRIALS

Despite these challenges, the path forward for phytotherapy remains clear, albeit demanding. This requires a multidisciplinary approach that integrates ancient knowledge with the most advanced scientific tools.

1 Systematic Validation and Standardization: The future of botanical medicine depends on moving beyond single-marker analyses. The use of advanced analytical techniques (HPLC, GC-MS, and NMR) and chemometrics to establish comprehensive chemical and biological fingerprints is essential for creating standardized, reproducible, and reliable herbal medicines [94].

2 Overcoming Bioavailability with Nanotechnology: The development and application of novel drug delivery systems, especially nanocarriers, is crucial for solving the pharmacokinetic challenges that have hindered many phytochemicals. These technologies can transform poorly absorbed compounds into effective systemic agents [97].

3 Focus on Synergy: Research should prioritize the investigation of synergistic combinations. This includes both phytochemical-phytochemical combinations to develop potent multi-component drugs and phytochemical-antibiotic combinations to act as resistance breakers, reviving our existing antimicrobial arsenal [86].

4 Rigorous Clinical Evaluation: The therapeutic value of plant-based antimicrobials must be proven through well-designed, randomized, controlled clinical trials [102]. Although challenging and expensive, these trials are non-negotiable for integrating phytotherapy into mainstream medicine and gaining the confidence

of clinicians and patients.

By embracing this integrated approach, the scientific community can bridge the gap between traditional promises and clinical reality, unlocking the vast potential of the phytochemical arsenal in the urgent global fight against antimicrobial resistance.

9. CONCLUSION

The relentless rise in antimicrobial resistance represents one of the most significant public health threats of the 21st century, heralding a potential return to a pre-antibiotic era where common infections could be fatal. The conventional drug discovery model, with its long-standing focus on single-target agents, has proven inadequate for combating the rapid evolutionary adaptability of microbial pathogens. This review asserts that a paradigm shift toward polypharmacology is not just advantageous but imperative and that the vast, chemically diverse world of plant-derived phytochemicals offers the most promising foundation for this new approach.

Plant extracts, by their very nature, are complex synergistic mixtures that engage pathogens through a multitude of mechanisms simultaneously. They disrupt structural integrity, sabotage core metabolic and genetic processes, and dismantle defensive strategies such as biofilm formation and efflux pump activity. This multifaceted assault creates a high evolutionary barrier, significantly delaying the development of resistance compared with single-target drugs. Furthermore, the ability of phytochemicals to act as adjuvants, which revives the efficacy of conventional antibiotics, provides a critical and resource-efficient strategy to expand our dwindling therapeutic arsenal. The journey from traditional remedies to clinically approved medicines is undeniably arduous and marked by significant challenges in chemical standardization, pharmacokinetic optimization, and regulatory navigation. The complexity that makes these extracts effective also makes them difficult to fit within a regulatory framework designed for single-molecule drugs. However, these challenges are not insurmountable. The integration of traditional ethnobotanical knowledge with modern scientific innovations, including advanced analytical chemistry for fingerprinting, nanotechnology for enhanced delivery, and rigorous, well-designed clinical trials, provides a clear path forward. By embracing the inherent complexity and multitarget nature of the phytochemical arsenal, we can harness the healing power of nature to develop a new generation of robust and sustainable antimicrobials, offering renewed hope for the global fight against drug-resistant pathogens.

REFERENCES

[1] Centers for Disease Control and Prevention. *Antimicrobial resistance facts and stats*. U.S. Department of Health

and Human Services. [Online; accessed 2025-09-12]. Feb. 2025. URL: <https://www.cdc.gov/antimicrobial-resistance/data-research/facts-stats/index.html>.

[2] Institute for Health Metrics and Evaluation. *The Lancet: More than 39 million deaths from antibiotic-resistant infections estimated between now and 2050, suggests first global analysis*. IHME News Release. [Online; accessed 2025-09-12]. Sept. 2024. URL: <https://www.healthdata.org/news-events/newsroom/news-releases/lancet-more-39-million-deaths-antibiotic-resistant-infections>.

[3] S. E. Dogan. *New forecasts reveal that 39 million deaths will be directly attributable to bacterial antimicrobial resistance between 2025–2050*. Wellcome. [Online; accessed 2025-09-12]. Sept. 2024. URL: <https://wellcome.org/news/new-forecasts-reveal-39-million-deaths-will-be-directly-attributable-bacterial-antimicrobial>.

[4] M. Naghavi, S. E. Vollset, K. Ikuta, et al. "Global burden of bacterial antimicrobial resistance 1990–2021: a systematic analysis with forecasts to 2050". In: *The Lancet* 404.10459 (Sept. 2024), pp. 1199–1226. DOI: [10.1016/S0140-6736\(24\)01867-1](https://doi.org/10.1016/S0140-6736(24)01867-1).

[5] J. F. Prescott. "The resistance tsunami, antimicrobial stewardship, and the golden age of microbiology". In: *Vet. Microbiol.* 171.3–4 (2014), pp. 273–278. DOI: [10.1016/j.vetmic.2014.02.035](https://doi.org/10.1016/j.vetmic.2014.02.035).

[6] World Health Organization. *WHO Bacterial Priority Pathogens List, 2024: Bacterial pathogens of public health importance to guide research, development and strategies to prevent and control antimicrobial resistance*. [Online; accessed 2024-05-17]. May 2024. URL: <https://www.who.int/publications/i/item/9789240093461>.

[7] Institute for Health Metrics and Evaluation (IHME). *Yemen Profile: Global Research on Antimicrobial Resistance (GRAM)*. [Online]. 2023. URL: <https://www.healthdata.org/sites/default/files/2023-09/Yemen.pdf>.

[8] M. N. Q. Al-Bana et al. "A systematic review of the prevalence of *Campylobacter jejuni* in chicken populations within Middle East and North Africa (2014–2025)". In: *Sana'a Univ. J. Appl. Sci. Technol.* 3.3 (2025), pp. 891–897. DOI: [10.59628/jast.v3i3.1672](https://doi.org/10.59628/jast.v3i3.1672).

[9] Y. A. Al-Maktari et al. "Antimicrobial resistance pattern and prevalence of *Escherichia coli* isolated from urinary tract infections in Yemen". In: *Microb. Drug Resist.* 26.6 (2020). [Online], pp. 678–685. URL: <https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7195635/>.

[10] A. Al-Gheethi et al. "Antibiotic resistance patterns and virulence genes in *Escherichia coli* isolated from street-vended foods in Yemen". In: *JAC-Antimicrobial Resist.* 6.2 (2024). [Online], dlae024. URL: <https://academic.oup.com/jacamr/article/6/2/dlae024/7621353>.

[11] A. Al-Gheethi et al. "Antibiotic resistance patterns and virulence genes in *Escherichia coli* isolated from street-vended foods in Yemen". In: *JAC-Antimicrobial Resist.* 6.2 (2024). [Online], dlae024. URL: <https://academic.oup.com/jacamr/article/6/2/dlae024/7621353>.

[12] E. Al-Awadhi et al. "Helicobacter pylori infection among patients with type II diabetes mellitus". In: *J. Diab. Metab. Disord. Control.* 7.2 (2020), pp. 53–56. DOI: [10.15406/jdmdc.2020.07.00200](https://doi.org/10.15406/jdmdc.2020.07.00200).

[13] A. Al-Thobhani et al. "Seroprevalence of Rubella virus antibodies among pregnant women in Hodeidah city, Western Yemen". In: *J. Hum. Virol. Retrovirol.* 10.1 (2023), pp. 7–10. DOI: [10.15406/jhvr.2023.10.00256](https://doi.org/10.15406/jhvr.2023.10.00256).

[14] M. N. Q. Al-Bana et al. "Seroprevalence and risk factors of herpes simplex virus type 2 among pregnant women in Dhamar city, Yemen". In: *MOJ Biol. Med.* 6.3 (2021), pp. 108–114. DOI: [10.15406/mojbm.2021.06.00141](https://doi.org/10.15406/mojbm.2021.06.00141).

[15] Q. Y. M. Abdullah et al. "Microbiological quality assessment of ice cream produced in Yemen". In: *Sana'a Univ. J. Appl. Sci. Technol.* 3.2 (2025), pp. 749–755. DOI: [10.59628/jast.v3i2.1525](https://doi.org/10.59628/jast.v3i2.1525).

[16] S. Al-Arnoot et al. "Human and animal brucellosis in Yemen". In: *J. Hum. Virol. Retrovirol.* 5.4 (2017), p. 00162. DOI: [10.15406/jhvr.2017.05.00162](https://doi.org/10.15406/jhvr.2017.05.00162).

[17] Q. Y. M. Abdullah et al. "Seroprevalence of brucella infection among pregnant women in Sana'a city, Yemen". In: *Biom Biostat Int J* 7.5 (2018), pp. 445–451. DOI: [10.15406/bbij.2018.07.00245](https://doi.org/10.15406/bbij.2018.07.00245).

[18] M. A. Nowhi et al. "Comparison of standard agglutination test and enzyme-linked immunosorbent assay to detect brucella infection in Yemeni pregnant women". In: *J. Microbiol. Exp.* 5.5 (2017), pp. 11–12. DOI: [10.15406/jmen.2017.05.00160](https://doi.org/10.15406/jmen.2017.05.00160).

[19] A. A. Howilah et al. "Association between the biofilm formation of *Streptococcus mutans*, dental caries experience, and resistance to antibiotics in adult patients". In: *Sana'a Univ. J. Med. Health Sci.* 18.2 (2024), pp. 39–47. DOI: [10.59628/jchm.v18i2.845](https://doi.org/10.59628/jchm.v18i2.845).

[20] S. M. M. Darwiesh et al. "The association between antibiotic resistance and biofilm production in *Klebsiella pneumoniae* isolated from urinary tract infections". In: *Sana'a Univ. J. Med. Health Sci.* 18.2 (2024), pp. 13–20. DOI: [10.59628/jchm.v18i2.987](https://doi.org/10.59628/jchm.v18i2.987).

[21] E. A. F. K. Al-Yosffi et al. "An emerging bacterium, *Chryseobacterium indologenes*: A case report and literature review". In: *Sana'a Univ. J. Med. Health Sci.* 18.2 (2024), pp. 1–4. DOI: [10.59628/jchm.v18i2.585](https://doi.org/10.59628/jchm.v18i2.585).

[22] FAOLEX. *National Action Plan for Antimicrobial Resistance, Yemen*. <https://www.fao.org/faolex/results/details/es/c/LEX-FAOC221839/>. [Online; accessed 2025-08-23]. 2022.

[23] WHO EMRO. *Scaling Up Action to Prevent Drug-Resistant Infections in Yemen*. [Online]. 2023. URL: <https://www.who.int/yemen/news/scaling-up-action-to-prevent-drug-resistant-infections-in-yemen.html>.

[24] S. Al-Arnoot et al. "Seroprevalence, risk factors and awareness of Cytomegalovirus infection among pregnant women in Hodeidah city, Western Yemen". In: *Proc. Scientific Conference for Medical Labs*. Sana'a, Yemen: Sana'a University, 2017.

[25] D. A. Gray and M. Wenzel. "Multitarget approaches against multiresistant superbugs". In: *ACS Infect. Dis.* 6.6 (June 2020), pp. 1346–1365. DOI: [10.1021/acsinfecdis.0c00001](https://doi.org/10.1021/acsinfecdis.0c00001).

[26] J. M. Munita and C. A. Arias. "Mechanisms of antibiotic resistance". In: *Microbiol. Spectr.* 4 (2016), pp. 1–37. DOI: [10.1128/microbiolspec.vmbf-0016-2015](https://doi.org/10.1128/microbiolspec.vmbf-0016-2015).

[27] J. Feng et al. "Multitarget antibacterial drugs: An effective strategy to combat bacterial resistance". In: *Pharmacol. Ther.* 252 (2023), p. 108550. DOI: [10.1016/j.pharmthera.2023.108550](https://doi.org/10.1016/j.pharmthera.2023.108550).

[28] M. E. Elshobary et al. "Combating antibiotic resistance: Mechanisms, multidrug-resistant pathogens, and novel therapeutic approaches: An updated review". In: *Pharmaceuticals* 18.3 (2025), p. 402. DOI: [10.3390/ph18030402](https://doi.org/10.3390/ph18030402).

[29] P. D. Tamma et al. "2024 guidance on the treatment of antimicrobial-resistant Gram-negative infections". In: *Clin. Infect. Dis.* (2024). DOI: [10.1093/cid/ciae403](https://doi.org/10.1093/cid/ciae403).

[30] E. M. Halawa et al. "Antibiotic action and resistance: Updated review of mechanisms, spread, influencing factors, and alternative approaches for combating resistance". In: *Front. Pharmacol.* 14 (2024), p. 1305294. DOI: [10.3389/fphar.2023.1305294](https://doi.org/10.3389/fphar.2023.1305294).

[31] W. Y. Belay et al. "Mechanism of antibacterial resistance, strategies and next-generation antimicrobials to contain antimicrobial resistance: A review". In: *Front. Pharmacol.* 15 (Aug. 2024), p. 1444781. DOI: [10.3389/fphar.2024.1444781](https://doi.org/10.3389/fphar.2024.1444781).

[32] B. B. Petrovska. "Historical review of medicinal plants' usage". In: *Pharmacogn. Rev.* 6.11 (Jan. 2012), pp. 1–5. DOI: [10.4103/0973-7847.95849](https://doi.org/10.4103/0973-7847.95849).

[33] N. P. Joe, O. K. John, and O. B. Ihuoma. "Significance of ethnomedical practices in drug discovery and modern medicine". In: *Asian Basic Appl. Res. J.* 6.1 (2024). [Online], pp. 91–200. URL: <https://jofresearch.com/index.php/ABAARJ/article/view/143>.

[34] H. Yuan et al. "The traditional medicine and modern medicine from natural products". In: *Molecules* 21.5 (Apr. 2016), p. 559. DOI: [10.3390/molecules21050559](https://doi.org/10.3390/molecules21050559).

[35] Q. Y. M. Abdullah et al. "Boswellia sacra in South Arabian Peninsula: A Review". In: *Sana'a Univ. J. Appl. Sci. Technol.* 3.1 (2025), pp. 604–620. DOI: [10.59628/jast.v3i1.1475](https://doi.org/10.59628/jast.v3i1.1475).

[36] J. Jessica. "The healing power of nature: Medicinal plants in traditional and modern medicine". In: *J. Pharm. Sci. Emerg. Drugs* 11.4 (2023). DOI: [10.4172/2380-9477.1000146](https://doi.org/10.4172/2380-9477.1000146).

[37] M. E. Salam et al. "Traditional resources and tools for modern drug discovery: Ethnomedicine and pharmacology – Book review". In: *Ethnobot. Res. Appl.* 30 (2025), pp. 1–3. URL: <https://ethnobotanyjournal.org/index.php/era/article/view/6887>.

[38] M. V. Ashraf et al. "Phytochemicals as antimicrobials: Prospecting Himalayan medicinal plants as source of alternate medicine to combat antimicrobial resistance". In: *Pharmaceuticals* 16.6 (2023), p. 881. DOI: [10.3390/ph16060881](https://doi.org/10.3390/ph16060881).

[39] J. M. S. Rufa'i et al. "Essential oils and their antimicrobial activity: A review". In: *UMYU J. Microbiol. Res.* 2.2 (2017), pp. 87–93. URL: <https://www.ajol.info/index.php/ujmr/article/view/287242/270616>.

[40] María Trinidad Gallegos, Paola Andrea Vargas Gallego, and Ignacio Rodríguez-García. "Antibacterial actions of flavonoids". In: *Rev. Progr. Microbiol. Parasitol.* 40 (2016). URL: <https://digital.csic.es/bitstream/10261/275709/1/antiflavo6.pdf>.

[41] P. Angelini. "Plant-derived antimicrobials and their crucial role in combating antimicrobial resistance". In: *Antibiotics* 13.8 (2024), p. 746. DOI: [10.3390/antibiotics13080746](https://doi.org/10.3390/antibiotics13080746).

[42] Q. Wang and M. Xie. "Antibacterial activity and mechanism of luteolin on *Staphylococcus aureus*". In: *Wei Sheng Wu Xue Bao = Acta Microbiol. Sinica* 50.9 (2010), pp. 1180–1184. URL: <https://pubmed.ncbi.nlm.nih.gov/21090258/>.

[43] Ana María García-Muñoz et al. "A descriptive review of the antioxidant effects and mechanisms of action of berberine and silymarin". In: *Molecules* 29.19 (2024), p. 4576. DOI: [10.3390/molecules29194576](https://doi.org/10.3390/molecules29194576).

[44] A. Vaishampayan and E. Grohmann. "Antimicrobials functioning through ROS-mediated mechanisms: Current insights". In: *Microorganisms* 10.1 (2021), p. 61. DOI: [10.3390/microorganisms10010061](https://doi.org/10.3390/microorganisms10010061).

[45] G. Dhanda, Y. Acharya, and J. Halder. "Antibiotic adjuvants: a versatile approach to combat antibiotic resistance". In: *ACS Omega* 8.12 (2023), pp. 10757–10783. DOI: [10.1021/acsomega.3c00312](https://doi.org/10.1021/acsomega.3c00312).

[46] A. Adonizio, K. F. Kong, and K. Mathee. "Inhibition of quorum sensing-controlled virulence factor production in *Pseudomonas aeruginosa* by South Florida plant extracts". In: *Antimicrob. Agents Chemother.* 52.1 (2008), pp. 198–203. DOI: [10.1128/AAC.00612-07](https://doi.org/10.1128/AAC.00612-07).

[47] F. M. Husain et al. "Leaf extracts of *Mangifera indica* L. inhibit quorum sensing-regulated production of virulence factors and biofilm in test bacteria". In: *Front. Microbiol.* 8 (2017), p. 727. DOI: [10.3389/fmicb.2017.00727](https://doi.org/10.3389/fmicb.2017.00727).

[48] Y. Yan et al. "Research progress on antibacterial activities and mechanisms of natural alkaloids: A review". In: *Antibiotics* 10.3 (2021), p. 318. DOI: [10.3390/antibiotics10030318](https://doi.org/10.3390/antibiotics10030318).

[49] C.-W. Zhang et al. "The antifungal effects of berberine and its proposed mechanism of action through CYP51 inhibition, as predicted by molecular docking and binding analysis". In: *Molecules* 29.21 (2024), p. 5079. DOI: [10.3390/molecules29215079](https://doi.org/10.3390/molecules29215079).

[50] J. Yong et al. "Synergistic effect of berberine hydrochloride and fluconazole against *Candida albicans* resistant isolates". In: *Front. Microbiol.* 11 (2020), p. 1498. DOI: [10.3389/fmicb.2020.01498](https://doi.org/10.3389/fmicb.2020.01498).

[51] Taylor & Francis. *Palmatine*. Accessed: 2025-08-23. 2025. URL: https://taylorandfrancis.com/knowledge/Medicine_and_healthcare/Pharmaceutical_medicine/Palmatine/.

[52] T. Wang et al. "Strong synergism of palmatine and fluconazole/itraconazole against planktonic and biofilm cells of *Candida* species and efflux-associated antifungal mechanism". In: *Front. Microbiol.* 9 (2018), p. 2892. DOI: [10.3389/fmicb.2018.02892](https://doi.org/10.3389/fmicb.2018.02892).

[53] S. K. Acharya. "Synergistic effects of black pepper (*Piper nigrum*) with other spices and herbs". In: *Int. J. Prog. Res. Eng. Manag. Sci. (IJPREMS)* 4.6 (2024), pp. 1768–1774. URL: https://www.ijprems.com/uploadedfiles/paper/issue_6_june_2024/35103/final/fin_ijprems1718779955.pdf.

[54] Eunice Ego Mgbeahuruike et al. "Antimicrobial and synergistic effects of commercial piperine and piperlongumine in combination with conventional antimicrobials". In: *Antibiotics* 8.2 (2019), p. 55. DOI: [10.3390/antibiotics8020055](https://doi.org/10.3390/antibiotics8020055).

[55] C. Lin et al. "Mupirocin-piperine microemulsion hydrogels accelerate healing of infected wounds through deep penetration and biofilm disruption". In: *Mol. Pharm.* (2025). DOI: [10.1021/acs.molpharmaceut.5c00479](https://doi.org/10.1021/acs.molpharmaceut.5c00479).

[56] D. M. Hikal. "Antibacterial Activity of Piperine and Black Pepper Oil". In: *Biosci. Biotechnol. Res. Asia* 15.4 (2018), pp. 877–880. DOI: [10.13005/bbra/2697](https://doi.org/10.13005/bbra/2697).

[57] S. H. Baqer, S. G. Al-Shawi, and Z. K. Al-Younis. "Quercetin, the potential powerful flavonoid for human and food: A review". In: *Front. Biosci. (Elite Ed.* 16.3 (2024), p. 30. DOI: [10.31083/j.fbe1603030](https://doi.org/10.31083/j.fbe1603030).

[58] T. L. A. Nguyen and D. Bhattacharya. "Antimicrobial activity of quercetin: An approach to its mechanistic principle". In: *Molecules* 27.8 (Apr. 2022), p. 2494. DOI: [10.3390/molecules27082494](https://doi.org/10.3390/molecules27082494).

[59] S. Qu et al. "Mechanism of synergy between tetracycline and quercetin against antibiotic-resistant *Escherichia coli*". In: *Front. Microbiol.* 10 (2019), p. 2536. DOI: [10.3389/fmicb.2019.02536](https://doi.org/10.3389/fmicb.2019.02536).

[60] A. Periferakis et al. "Kaempferol: Antimicrobial properties, sources, clinical, and traditional applications". In: *Int. J. Mol. Sci.* 23.23 (Nov. 2022), p. 15054. DOI: [10.3390/ijms232315054](https://doi.org/10.3390/ijms232315054).

[61] W. C. Reugaert. "The antimicrobial possibilities of green tea". In: *Front. Microbiol.* 5 (2014), p. 434. DOI: [10.3389/fmicb.2014.00434](https://doi.org/10.3389/fmicb.2014.00434).

[62] A. Renzetti et al. "Antibacterial green tea catechins from a molecular perspective: Mechanisms of action and structure–activity relationships". In: *Food & Funct.* (Oct. 2020). DOI: [10.1039/d0fo02054k](https://doi.org/10.1039/d0fo02054k).

[63] Y. Ding et al. "Antibacterial activity and mechanism of luteolin isolated from *Lophatherum gracile* Brongn. against multidrug-resistant *Escherichia coli*". In: *Front. Pharmacol.* 15 (2024), p. 1430564. DOI: [10.3389/fphar.2024.1430564](https://doi.org/10.3389/fphar.2024.1430564).

[64] N. A. Mahizan et al. "Terpene derivatives as a potential agent against antimicrobial resistance (AMR) pathogens". In: *Molecules* 24.14 (2019), p. 2631. DOI: [10.3390/molecules24142631](https://doi.org/10.3390/molecules24142631).

[65] M. F. N. Meeran et al. "Pharmacological properties and molecular mechanisms of thymol: Prospects for its therapeutic potential and pharmaceutical development". In: *Front. Pharmacol.* 8 (2017), p. 380. DOI: [10.3389/fphar.2017.00380](https://doi.org/10.3389/fphar.2017.00380).

[66] I. A. Bnyan, A. T. Abid, and H. N. Obied. "Antibacterial activity of carvacrol against different types of bacteria". In: *J. Nat. Sci. Res.* 4.9 (2014). URL: <https://core.ac.uk/download/pdf/234654709.pdf>.

[67] K. Farhadi et al. "Thymol and carvacrol against *Klebsiella*: Anti-bacterial, anti-biofilm, and synergistic activities—a systematic review". In: *Front. Pharmacol.* 15 (2024), p. 1487083. DOI: [10.3389/fphar.2024.1487083](https://doi.org/10.3389/fphar.2024.1487083).

[68] D. Al-Tawalbeh et al. "Assessment of carvacrol-antibiotic combinations' antimicrobial activity against methicillin-resistant *Staphylococcus aureus*". In: *Front. Microbiol.* 14 (2024), p. 1349550. DOI: [10.3389/fmicb.2023.1349550](https://doi.org/10.3389/fmicb.2023.1349550).

[69] M. K. M. Elbestawy, G. M. El-Sherbiny, and S. A. Moghanmam. "Antibacterial, antibiofilm and anti-inflammatory activities of eugenol clove essential oil against resistant *Helicobacter pylori*". In: *Molecules* 28.6 (Mar. 2023), p. 2448. DOI: [10.3390/molecules28062448](https://doi.org/10.3390/molecules28062448).

[70] Z. Hyderi et al. "Eugenol: An essential oil with potential antimicrobial and antibiofilm activity against foodborne bacteria". In: *J. Stored Prod. Res.* 112 (2025), p. 102644. DOI: [10.1016/j.jsp.2025.102644](https://doi.org/10.1016/j.jsp.2025.102644).

[71] C. F. Carson, K. A. Hammer, and T. V. Riley. "Melaleuca alternifolia (Tea Tree) oil: A review of antimicrobial and other medicinal properties". In: *Clin. Microbiol. Rev.* 19.1 (Jan. 2006), pp. 50–62. DOI: [10.1128/CMR.19.1.50-62.2006](https://doi.org/10.1128/CMR.19.1.50-62.2006).

[72] DrugBank Online. *Tea tree oil: Uses, Interactions, Mechanism of Action*. Accessed: 2025-06-13. 2025. URL: <https://go.drugbank.com/drugs/DB11218>.

[73] M. Takó et al. "Plant phenolics and phenolic-enriched extracts as antimicrobial agents against food-contaminating microorganisms". In: *Antioxidants* 9.2 (2020), p. 165. DOI: [10.3390/antiox9020165](https://doi.org/10.3390/antiox9020165).

[74] K. Dechsri et al. "Photodynamic antibacterial therapy of gallic acid-derived carbon-based nanoparticles (GACNPs): Synthesis, characterization, and hydrogel formulation". In: *Pharmaceutics* 16.2 (2024), p. 254. DOI: [10.3390/pharmaceutics16020254](https://doi.org/10.3390/pharmaceutics16020254).

[75] E. W. Mwangi, M. Shemesh, and V. Rodov. "Investigating the antibacterial effect of a novel gallic acid-based green sanitizer formulation". In: *Foods* 13.20 (2024), p. 3322. DOI: [10.3390/foods13203322](https://doi.org/10.3390/foods13203322).

[76] A. Borges et al. "Antibacterial activity and mode of action of ferulic and gallic acids against pathogenic bacteria". In: *Microb. Drug Resist.* 19.4 (2013). DOI: [10.1089/mdr.2012.0244](https://doi.org/10.1089/mdr.2012.0244).

[77] Y. Miao et al. "Proteomic study of the inhibitory effects of tannic acid on MRSA biofilm". In: *Front. Pharmacol.* 15 (2024), p. 1413669. DOI: [10.3389/fphar.2024.1413669](https://doi.org/10.3389/fphar.2024.1413669).

[78] A. Schestakow et al. "Evaluation of anti-biofilm activity of mouthrinses containing tannic acid or chitosan on dentin in situ". In: *Molecules* 26.5 (2021), p. 1351. DOI: [10.3390/molecules26051351](https://doi.org/10.3390/molecules26051351).

[79] A. Pikhtirova, E. Pecka-Kielb, and F. Zigo. "Antimicrobial activity of saponin-containing plants: review". In: *J. Dairy, Vet. & Animal Res.* 12.2 (2023), pp. 121–127. DOI: [10.15406/jdvar.2023.12.00336](https://doi.org/10.15406/jdvar.2023.12.00336).

[80] S. Krstic, H. S. Peixoto, and M. Wink. "Combinations of alkaloids affecting different molecular targets with the saponin digitonin can synergistically enhance trypanocidal activity against *Trypanosoma brucei brucei*". In: *Antimicrob. Agents Chemother.* 59 (2015). DOI: [10.1128/aac.01315-15](https://doi.org/10.1128/aac.01315-15).

[81] Ikhwan Resmala Sudji et al. "Membrane disintegration caused by the steroid saponin digitonin is related to the presence of cholesterol". In: *Molecules* 20.11 (Nov. 2015), pp. 20146–20160. DOI: [10.3390/molecules201119682](https://doi.org/10.3390/molecules201119682).

[82] Hubert Antolak et al. "Quillaja saponaria saponins with potential to enhance the effectiveness of disinfection processes in the beverage industry". In: *Appl. Sci.* 8.3 (2018), p. 368. DOI: [10.3390/app8030368](https://doi.org/10.3390/app8030368).

[83] T. Wang et al. "Strong synergism of palmatine and fluconazole/itraconazole against planktonic and biofilm cells of *Candida* species and efflux-associated antifungal mechanism". In: *Front. Microbiol.* 9 (2018), p. 2892. DOI: [10.3389/fmicb.2018.02892](https://doi.org/10.3389/fmicb.2018.02892).

[84] S. R. Mita et al. "Catechins as antimicrobial agents and their contribution to cosmetics". In: *Cosmetics* 12.1 (2025), p. 11. DOI: [10.3390/cosmetics12010011](https://doi.org/10.3390/cosmetics12010011).

[85] M. Ayaz et al. "Synergistic interactions of phytochemicals with antimicrobial agents: Potential strategy to counteract drug resistance". In: *Chem. Interactions* 308 (Aug. 2019), pp. 294–303. DOI: [10.1016/j.cbi.2019.05.050](https://doi.org/10.1016/j.cbi.2019.05.050).

[86] Natalia Wrońska et al. "The synergistic effect of triterpenoids and flavonoids—New approaches for treating bacterial infections?" In: *Molecules* 27.3 (Jan. 2022), p. 847. DOI: [10.3390/molecules27030847](https://doi.org/10.3390/molecules27030847).

[87] Claudia Salinas et al. "Terpenes combinations inhibit biofilm formation in *Staphylococcus aureus* by interfering with initial adhesion". In: *Microorganisms* 10.8 (2022), p. 1527. DOI: [10.3390/microorganisms10081527](https://doi.org/10.3390/microorganisms10081527).

[88] H. Wagner and G. Ulrich-Merzenich. "Synergy research: approaching a new generation of phytopharmaceuticals". In: *Phytomedicine* 16.2-3 (Mar. 2009), pp. 97–110. DOI: [10.1016/j.phymed.2008.12.018](https://doi.org/10.1016/j.phymed.2008.12.018).

[89] G. Magi, E. Marini, and B. Facinelli. "Antimicrobial activity of essential oils and carvacrol, and synergy of carvacrol and erythromycin, against clinical, erythromycin-resistant Group A Streptococci". In: *Front. Microbiol.* 6 (Mar. 2015), p. 165. DOI: [10.3389/fmicb.2015.00165](https://doi.org/10.3389/fmicb.2015.00165).

[90] Cristina Gan et al. "Synergistic activity of thymol with commercial antibiotics against critical and high WHO priority pathogenic bacteria". In: *Plants* 12.9 (May 2023), p. 1868. DOI: [10.3390/plants12091868](https://doi.org/10.3390/plants12091868).

[91] A. Parveen et al. "Challenges and guidelines for clinical trial of herbal drugs". In: *J. Pharm. Bioallied Sci.* 7.4 (2015), pp. 329–333. DOI: [10.4103/0975-7406.168035](https://doi.org/10.4103/0975-7406.168035).

[92] R. C. Misra, R. Thimmappa, and M. Bonfill. "Editorial: Advances in discoveries of plant phytochemicals". In: *Front. Plant Sci.* 15 (2024), p. 1414150. DOI: [10.3389/fpls.2024.1414150](https://doi.org/10.3389/fpls.2024.1414150).

[93] A. Kumar et al. "Major phytochemicals: Recent advances in health benefits and extraction method". In: *Molecules* 28.2 (Jan. 2023), p. 887. DOI: [10.3390/molecules28020887](https://doi.org/10.3390/molecules28020887).

[94] E. Noviana, G. Indrayanto, and A. Rohman. "Advances in fingerprint analysis for standardization and quality control of herbal medicines". In: *Front. Pharmacol.* 13 (June 2022), p. 853023. DOI: [10.3389/fphar.2022.853023](https://doi.org/10.3389/fphar.2022.853023).

- [95] F. Aqil et al. "Bioavailability of phytochemicals and its enhancement by drug delivery systems". In: *Cancer Lett.* 334.1 (June 2013), pp. 133–141. DOI: [10.1016/j.canlet.2013.02.032](https://doi.org/10.1016/j.canlet.2013.02.032).
- [96] I. Mohamed et al. "The application of phytomedicine in modern drug development". In: *The Internet J. Herb. Plant Med.* 1.2 (2012). [Online; accessed 2025-06-13]. URL: <https://ispub.com/IJHPM/1/2/14278>.
- [97] S. S. Imam et al. "Recent advancement in chitosan-based nanoparticles for improved oral bioavailability and bioactivity of phytochemicals: Challenges and perspectives". In: *Polymers* 13.22 (2021), p. 4036. DOI: [10.3390/polym13224036](https://doi.org/10.3390/polym13224036).
- [98] U.S. Food and Drug Administration. *Frequently asked questions on botanical drug product development*. [Online; accessed 2025-06-13]. 2025. URL: <https://www.fda.gov/about-fda/cder-offices-and-divisions/frequently-asked-questions-botanical-drug-product-development>.
- [99] Dalton Pharma Services. *Botanical drug development guidance*. [Online]. 2025. URL: <https://www.dalton.com/Content/files/botanical-drug-development-guidance.pdf>.
- [100] Fieldfisher. *Botanical drugs: What is the best path forward for regulatory and market approval?* [Online]. 2025. URL: <https://www.fieldfisher.com/en/insights/botanical-drugs-what-is-the-best-path-forward-for-regulatory-and-market-approval>.
- [101] European Pharmaceutical Review. *Botanical drugs: What is the best way forward for regulatory and market approval?* [Online]. 2025. URL: <https://www.europeanpharmaceuticalreview.com/article/231091/botanical-drugs-what-is-the-best-way-forward-for-regulatory-and-market-approval/>.
- [102] Ildikó Gágyor et al. "Herbal treatment with uva ursi extract versus fosfomycin in women with uncomplicated urinary tract infection in primary care: A randomized controlled trial". In: *Clin. Microbiol. Infect.* 27.10 (Oct. 2021), pp. 1441–1447. DOI: [10.1016/j.cmi.2021.05.032](https://doi.org/10.1016/j.cmi.2021.05.032).