

Asymptomatic *Giardia* infection and adverse nutritional outcomes among rural schoolchildren in Sana'a Governorate, Yemen

Mohammed A. K. Mahdy^{1,*}, Sami A. Al-Haidari^{1,2}, Rashad Abdul-Ghani^{1,3} and Abdulsalam M. Al-Mekhlafi¹

¹Department of Parasitology, Faculty of Medicine and Health Sciences, Sana'a University, Yemen,

²Diseases Control & Surveillance, Ministry of Public Health and Population, Sana'a, Yemen,

³Tropical Disease Research Center, Faculty of Medicine and Health Sciences, University of Science and Technology, Sana'a, Yemen.

*Corresponding author: alsharaby9@yahoo.com

ABSTRACT

Background and Aim: The association between infection with *Giardia lamblia* and malnutrition in school-age children is well documented. Because both conditions are common among Yemeni schoolchildren, this study aimed to determine the prevalence of *Giardia* infection and its associated factors and to assess its association with adverse nutritional outcomes among rural schoolchildren in Sana'a Governorate, Yemen.

Subjects and Methods: A school-based, cross-sectional study was conducted among 445 schoolchildren aged 6–15 years. *Giardia lamblia* and other intestinal protozoa were detected by microscopic examination of stool specimen sediments after concentration with the formal-ether technique. Sociodemographic, behavioral, and environmental data were collected using a structured questionnaire through face-to-face interviews, and nutritional status was assessed using anthropometric measurements. Univariate analysis was used to test the significance of the associations, and multivariable binary logistic regression was employed to identify the independent predictors of *Giardia* infection.

Results: *Giardia* infection was prevalent among 20.2% [95% confidence interval (CI): 16.6, 23.8] of schoolchildren. Age 11 years (adjusted odds ratio [AOR] = 1.9, 95% CI: 1.05, 3.31; $p = 0.029$), farmland ownership by children's families (AOR = 2.4, 95% CI: 1.30, 4.34; $p = 0.014$), and not washing hands after playing with soil (AOR = 3.1, 95% CI: 1.05, 8.89; $p = 0.047$) were independent predictors of *Giardia* infection. In terms of adverse nutritional outcomes, *Giardia* infection was significantly associated with stunting among children aged 6–11 years (OR = 1.9, 95% CI: 1.10, 3.22; $p = 0.022$) but was not associated with wasting or underweight.

Conclusion: One in five rural schoolchildren in Sana'a Governorate is infected with *G. lamblia*. Younger age, not practicing handwashing after playing with soil, and belonging to families owning farmland can independently predict infection. *Giardia* infection is associated with stunting among schoolchildren. Therefore, improving the nutritional status of rural schoolchildren warrants the prevention and control of *Giardia* infection.

ARTICLE INFO

Keywords:

Giardia infection, Malnutrition, Stunting, Schoolchildren, Yemen

Article History:

Received: 1-June-2025,

Revised: 14-June-2025,

Accepted: 10-August-2025,

Available online: 31-August-2025.

INTRODUCTION

Giardia lamblia, also called *G. duodenalis* or *G. intestinalis*, is a protozoan parasite that infects the small in-

testine and is typically transmitted through the fecal-oral route, often involving contaminated food, drinks or hands. Transmission can be anthroponotic or zoonotic [1, 2].

Globally, it is responsible for an estimated 28.8 million cases of foodborne diarrheal illness each year [3], and 250 water-borne outbreaks of the parasite were documented from 2017 to 2020 [4]. Although infection can be asymptomatic, giardiasis may cause diarrhea [5, 6, 7], pediatric wasting [8, 9], and stunting [9, 10, 11, 12]. In addition, it has been linked to long-term health issues, including irritable bowel syndrome, chronic fatigue, and pediatric cognitive impairment [13, 14].

In addition to being heavily burdened by neglected tropical diseases (NTDs) [15], Yemen is among the world's least developed nations, ranking 183rd out of 191 countries and territories in the 2022 Human Development Index (HDI) [16]. The ongoing conflict since 2015 has further exacerbated the situation, resulting in one of the most severe global humanitarian crises. Reports indicate that the prevalence of *Giardia* infections in the country varies from 9.7% to 35.3% across various population groups and study settings [17, 18, 19, 20, 21, 22, 23, 24, 25]. Factors linked to higher infection rates include being male [19, 23], consuming unsafe water, and poor hygiene practices such as not washing hands after using the toilet, having infected family members, and close contact with animals [19]. *Giardia* infection has been widely linked to malnutrition among school-age children (SAC) [9, 26]. Nevertheless, there is limited information regarding how this parasite affects the nutritional health of children in Yemen, although both *Giardia* infection [18] and malnutrition [18, 27, 28, 29] are highly prevalent among schoolchildren in the country. Yemen's national nutritional strategy aims to reduce the incidence of infectious diseases affecting the nutritional status of schoolchildren [30]; *Giardia* infection has been neglected in national control strategies against parasitic infections in the country. This neglect may be attributed to the prioritization of soil-transmitted helminth infections and schistosomiasis, along with insufficient data on the nutritional consequences of *Giardia* infection. Therefore, the present study aimed to determine the prevalence of *Giardia* infection and its associated factors and to assess its association with adverse nutritional outcomes among rural schoolchildren in Sana'a Governorate, Yemen.

SUBJECTS AND METHODS

STUDY DESIGN, AREA AND SUBJECTS

This school-based, cross-sectional study was conducted among schoolchildren aged 6–15 years in rural areas of Sana'a Governorate, Yemen, in 2018. This Governorate surrounds the capital city of Sana'a and is located at 15°21'N and 44°12'E, covering an area of 13,850 km². It is divided into 16 districts and inhabited by 1,311 million people according to the 2017 projections [31], with over 97% being residents in rural areas and mainly engaged in agricultural activities.

SAMPLE SIZE AND SAMPLING STRATEGY

To estimate the prevalence of *Giardia* infection, a minimum sample size of 416 schoolchildren was calculated using Open Epi Info, version 3.01 (accessible at www.openepi.com). This calculation was based on the following parameters: anticipated prevalence of 16.1% [18], 95% confidence level, 5% margin of error, and design effect of 2. A total of 445 schoolchildren were recruited for this study. A multistage cluster sampling method was employed, in which two districts (Bani Matar and Al-Haimah Al-Dakheliah) were randomly selected from the 16 districts of the governorate (Figure 1). One school was selected randomly from each district. School children were then selected by simple random sampling, using the student records as a sampling frame and replacing absent, unwilling, and ineligible students with the next in the record.

DATA COLLECTION AND ANTHROPOMETRIC MEASUREMENTS

Sociodemographic, behavioral, and environmental data were collected using a structured questionnaire via face-to-face interviews. To assess anthropometric status, children's body weight was recorded to the nearest 0.1 kg using a digital scale, their standing height was recorded to the nearest 0.1 cm using a stadiometer, and their age was obtained from school records. These measures were used to compute the height-for-age Z-score (HAZ), weight-for-age Z-score (WAZ), and body mass index (BMI)-for-age Z-score (BAZ), using the WHO AnthroPlus software, which has been designed to assess the growth and nutritional status of children and adolescents aged 5 to 19 years. [32] Children were categorized as stunted if their HAZ was below -2 standard deviations (SD) from the WHO Growth Standards median. Similarly, underweight and wasting were defined by WAZ and BAZ scores below -2 SD, respectively, [32].

STOOL EXAMINATION

G. lamblia and other protozoan species were detected by microscopic examination of the sediment of a single stool sample per child after concentration by the formal-ether concentration technique [33].

DATA ANALYSIS

Data analysis was conducted using IBM SPSS Statistics software, version 23.0 (IBM Corp., Armonk, NY, USA). To evaluate household wealth, principal component analysis (PCA) was applied to variables such as ownership of durable goods, livestock, and agricultural land [34]. Based on the resulting PCA scores, the households were classified into five wealth quintiles. These were further consolidated into three categories: low (bot-

tom 40%), medium (middle 40%), and high (top 20%) wealth [34].

Pearson's chi-square test was employed in a univariate analysis to examine the relationship between individual independent variables and *Giardia* infection, along with calculating odds ratios (ORs) and their corresponding 95% confidence intervals (CIs). Subsequently, a binary logistic regression model was used for multivariate analysis to determine the predictors of *Giardia* infection in schoolchildren, reporting the adjusted ORs (AORs) and 95% CIs. Statistical significance was defined as a p-value less than 0.05.

ETHICAL CONSIDERATIONS

This study adhered to the ethical standards of the Declaration of Helsinki for research involving human participants. The study proposal was approved by the Postgraduate Committee of the Faculty of Medicine and Health Sciences at Sana'a University. Authorization was also secured from administrators of the selected schools after explaining its purpose and importance. Written informed consent was obtained from the parents or guardians of the participating children who were informed of their right to decline their children's participation. Meanwhile, the children's assent was obtained after providing them with easy-to-understand information and clarifying that participation was voluntary. Anonymity and confidentiality of the children and their families were guaranteed.

RESULTS

PREVALENCE OF *GIARDIA* AND OTHER PROTOZOAN SPECIES

Of the 445 schoolchildren, 248 (55.7%) were infected with at least one species of intestinal protozoa. Most schoolchildren were infected with *Entamoeba histolytica/dispar* (43.8%; 95% CI: 39.1, 48.8), followed by *G. lamblia* (20.2%; 95% CI: 16.6, 23.8) and *Entamoeba coli* (9.9%; 95% CI: 7.4, 12.8). Mixed infection with *E. histolytica/dispar* and *G. lamblia* was observed in 8.3% of schoolchildren (Table 1).

FACTORS ASSOCIATED WITH *GIARDIA* INFECTION

Table 2 shows that age ≤ 11 years (OR = 1.7; 95% CI: 0.99, 3.00; p = 0.052), belonging to farmland-owning families (OR = 3.1; 95% CI: 1.19, 7.83; p = 0.002), and not washing hands after contact with soil (OR = 2.1; 95% CI: 1.31, 3.38; p = 0.015) were significantly associated with *Giardia* infection. Moreover, age ≤ 11 years (AOR = 1.9, 95% CI: 1.05, 3.31; p = 0.029), belonging to farmland-owning families (AOR = 2.4, 95% CI: 1.30, 4.34; p = 0.014), and not washing hands after contact with soil (AOR = 3.1, 95% CI: 1.05, 8.89; p = 0.047) were con-

firmed as independent predictors of *Giardia* infection among school children.

AGE-ADJUSTED ASSOCIATION BETWEEN *GIARDIA* INFECTION AND ADVERSE NUTRITIONAL OUTCOMES

All adverse nutritional outcomes were higher among *Giardia*-infected children than among their counterparts, but only stunting was significantly associated with *Giardia* infection among children aged 6-11 years (OR = 1.9, 95% CI: 1.10, 3.22; p = 0.022). Conversely, no association was found between *Giardia* infection and wasting or being underweight across all age categories (Table 3).

DISCUSSION

Neglecting intestinal parasitic infections in rural communities in Yemen may be further affected by the repercussions of the ongoing humanitarian crisis in the country. In this context, more than half of the schoolchildren in the rural districts of Bani Mater and Al-Haimah Al-Dakheliah in Sana'a Governorate were infected with at least one species of intestinal protozoa. This finding agrees with that (54.8%) reported among rural schoolchildren in three other districts of Sana'a in a study conducted before the escalation of armed conflict and humanitarian crisis in the country [18].

The present study revealed a prevalence of *E. histolytica/dispar* (43.8%) compared with earlier reports in Yemen, which found rates of 16.4–27.8% among schoolchildren [17, 18, 35], 17.1% among patients attending health facilities [21], and 13.8% among immunocompromised patients [22]. In contrast, it is lower than that (53.6%) reported for the Entameba complex among rural communities in the four governorates of Yemen, including Sana'a [36]. The dominance of *E. histolytica/dispar* infections observed in this study aligns with findings from previous research involving schoolchildren in Yemen [17, 18, 35] and African countries [37]. However, the relative proportion of pathogenic *E. histolytica* to non-pathogenic *E. dispar* could not be determined by microscopic examination because of the morphological similarities between the two species, and approximately 90% of *Entamoeba* infections are asymptomatic and are caused by *E. dispar* [38].

In this study, *G. lamblia* emerged as the second most frequently detected protozoan, affecting approximately 20% of the rural schoolchildren. This finding corresponds with similar findings reported for school-aged children in Yemen and elsewhere [17, 18, 37]. Age was an independent predictor of infection, with children aged 11 years or younger more likely to be infected—a trend that mirrors observations from other districts within the same governorate [18], where higher infection rates were observed in children aged ≤ 10 years.

Table 1. Prevalence of *G. lamblia* and other intestinal protozoa among schoolchildren in Sana'a Governorate, Yemen (2018)*

Types of infection	n	(%; 95% CI)
Overall prevalence	248	(55.7; 51.1, 60.3)
Single infections		
<i>E. histolytica/dispar</i>	195	(43.8; 39.1, 48.8)
<i>G. lamblia</i>	90	(20.2; 16.6, 23.8)
<i>E. coli</i>	44	(9.9; 7.4, 12.8)
Mixed infections		
<i>G. lamblia</i> and <i>E. histolytica/dispar</i>	37	(8.3; 6.1, 11.3)
<i>G. lamblia</i> and <i>E. coli</i>	7	(1.6; 0.4, 2.9)
<i>E. histolytica/dispar</i> and <i>E. coli</i>	7	(1.6; 0.4, 2.9)

This finding is consistent with previous reports [39, 40, 41, 42, 43]. Poor personal hygiene can partially explain the significantly higher risk of infection among younger children.

Children from families that owned farmland were found to be at a higher risk—approximately twice as likely—of contracting *Giardia* infection, making farmland ownership a significant independent predictor of infection. This finding could be attributed to the involvement of children in agricultural activities that expose them to infection from contaminated soil or irrigation water. In this regard, involvement in agricultural activities was found to predispose Colombia, Egypt, and Nepal to *Giardia* infection [44, 45, 46]. Meanwhile, the spread of infection to children from other family members engaged in agriculture cannot be ruled out. The transmission of *G. lamblia* between individuals is well established [47, 48], with several studies indicating that having family members infected with *Giardia* increases the risk of contracting the infection [19, 49, 50].

Not practicing handwashing after playing with soil was an independent predictor of *Giardia* infection among schoolchildren in the present study, which is consistent with the findings of Yemen et al. [18, 19, 43, 51]. Soil can become contaminated with *G. lamblia* cysts as a result of unsanitary sewage disposal in rural areas, serving as a potential environmental source of infection [52, 53, 54] and facilitating the soil-to-mouth transmission of infection in children with poor personal hygiene. In contrast, no significant association was observed between *G. lamblia* infection and either the source of drinking water or availability of improved sanitation facilities. This finding is inconsistent with that reported for rural communities in Yemen, where drinking from unsafe water sources was significantly associated with *Giardia* infection [19].

Giardia infection, even if asymptomatic, can adversely affect the growth of children during early childhood [12]. In line with this assumption, in the present study, *Giardia* infection was significantly associated with stunting among schoolchildren aged 5–11 years, with *Giardia*-

infected children being twice as likely to be severely stunted as non-infected children. Similarly, *Giardia* infection has been reported as a determinant of stunting in SAC [9, 26, 55, 56] and preschool-age children [11, 57, 58, 59]. A recent cohort study across seven resource-limited settings showed that *Giardia* infection had a greater impact on linear growth during early childhood than other types of intestinal infection [12]. It is noteworthy that stunting causes morbidity and is a predictor of low cognitive functioning during school-age [60], underpinning the need for interventions to reduce the *Giardia* burden among children. The lack of association between *Giardia* infection and nutritional status in older children could be explained by cumulative immunity due to repeated exposure to *Giardia* with increasing age [61], reducing the adverse effects of infection [62].

One limitation of this study is its reliance on microscopic analysis of a single stool sample per child, possibly overlooking some infections due to the sporadic nature of cyst excretion. Nonetheless, the use of the formal ether concentration technique may enhance the sensitivity of detection. However, this study focused only on asymptomatic cases, because children with diarrhea often stay at home. This exclusion may have underestimated the prevalence and impact of symptomatic giardiasis on the study population. Therefore, community-based studies are recommended to investigate the association between symptomatic giardiasis and adverse nutritional outcomes in SAC patients.

CONCLUSION

Giardia infection ranks second after infection with *E. histolytica* among rural schoolchildren in Sana'a Governorate, infecting approximately one in five children. The younger age of children, not practicing handwashing after playing with soil, and belonging to families owning farmlands can independently predict infection among children.

Table 2. Factors associated with *Giardia* infection among rural schoolchildren in Sana'a Governorate, Yemen (2018)

Variable	N	<i>Giardia</i> infection					
		n	(%)	OR	(95% CI)	AOR	(95% CI)
Gender							
Male	230	45	(19.6)	Reference			
Female	215	45	(20.9)	1.1	(0.69, 1.73)	1.2	(0.74, 1.69)
Age (years)							
>11	131	19	(14.5)	Reference			
≤11	314	71	(22.6)	1.7	(0.99, 3.00)	1.9	(1.07, 3.39)
District							
Bani Mater	218	36	(16.5)	Reference			
Al-Haimah Al-Dakheliah	227	54	(23.8)	1.6	(0.99, 2.53)	1.7	(0.51, 5.86)
Household size (members)							
≤ 5	79	15	(19.0)	Reference			
>5	366	75	(20.5)	1.1	(0.59, 2.04)	0.8	(0.43, 1.62)
Father's education							
Educated	295	59	(20.0)	Reference			
Uneducated	150	31	(20.7)	1.0	(0.64, 1.70)	1.2	(0.69, 1.92)
Socioeconomic status (wealth index)							
High	89	16	(18.0)	Reference			
Medium	178	42	(23.6)	1.4	(0.74, 2.68)	1.3	(0.62, 2.58)
Low	178	32	(18.0)	1.0	(0.51, 1.94)	1.1	(0.51, 2.41)
Sanitation^a							
Improved	208	36	(17.3)	Reference			
Unimproved	237	54	(22.8)	1.4	(0.88, 2.26)	0.5	(0.16, 1.58)
Source of drinking water							
Piped	113	21	(18.6)	Reference			
Unpiped	332	69	(20.8)	1.2	(0.67, 1.98)	1.4	(0.72, 2.51)
Family ownership of farmlands							
No	233	34	(14.6)	Reference			
Yes	212	56	(26.4)	2.1	(1.31, 3.38)	2.3	(1.18, 4.49)
Washing hands before eating							
Yes	429	86	(20.0)	Reference			
No	16	4	(25.0)	1.3	(0.42, 4.22)	2.1	(0.61, 7.50)
Washing hands after playing with soil							
Yes	426	82	(19.2)	Reference			
No	19	8	(42.1)	3.1	(1.19, 7.83)	3.0	(1.02, 8.59)
Washing hands with soap							
Yes	357	68	(19.0)	Reference			
No	88	22	(25.0)	1.4	(0.82, 2.50)	0.9	(0.44, 1.84)

OR, odds ratio; AOR, adjusted odds ratio; CI, confidence interval.

Table 3. Age-adjusted association of *Giardia* infection with clinical and nutritional outcomes among rural schoolchildren in Sana'a Governorate, Yemen (2018)

<i>Giardia</i> infection status	N	Adverse nutritional outcomes									
		Stunting			Wasting			Underweight ^a			
		n	(%)	OR	(95% CI)	n	(%)	OR	(95% CI)	n	(%)
Schoolchildren aged 6–11 years											
Non-infected	243	74	(30.5)	Reference		36	(14.8)	Reference		46	(25.4)
Infected	71	32	(45.1)	1.9	(1.10, 3.22)*	12	(16.9)	1.2	(0.57, 2.39)	17	(34.0)
Schoolchildren aged 12–15 years											
Non-infected	112	86	(76.8)	Reference		57	(50.9)	Reference			
Infected	19	12	(63.2)	0.5	(0.19, 1.45)	6	(31.6)	0.5	(0.16, 1.26)	NA	NA
Schoolchildren aged 5–15 years											
Non-infected	355	160	(45.1)	Reference		93	(26.2)	Reference			
Infected	90	44	(48.9)	1.2	(0.73, 1.85)	18	(20.0)	0.7	(0.40, 1.24)	NA	NA

OR, odds ratio; CI, confidence interval; NA, not applicable. * p = 0.022; a Calculated for 181 non-infected and 50 infected children, as the WHO AnthroPlus software uses WAZ reference data applicable only to children aged 10 years or younger.

Figure 1. Map of Yemen showing the location of Sana'a governorate and study districts

ACKNOWLEDGMENTS

The authors thank the children and their parents or legal guardians for their willingness to participate in the study as well as the administration of schools for their cooperation. Special thanks are extended to Moa'ath A. Mansour, Mohammed Attif, Ahmed Alhabibi, and Farhan Y Al-Jaberi from the Faculty of Medicine and Health Sciences at Sana'a University for their help during fieldwork.

FUNDING

None

CONFLICT OF INTERESTS

The authors declare no conflicts of interest associated with this study.

REFERENCES

- [1] W. Cai et al. "Zoonotic giardiasis: an update". In: *Parasitol Res* 120.12 (2021), pp. 4199–4218. DOI: [10.1007/s00436-021-07325-2](https://doi.org/10.1007/s00436-021-07325-2).
- [2] A. P. Oliveira-Arbex et al. "Genotyping of Giardia duodenalis isolates in asymptomatic children attending daycare centre: evidence of high risk for anthroponotic transmission". In: *Epidemiol Infect* 144.7 (2016), pp. 1418–1428. DOI: [10.1017/s0950268815002514](https://doi.org/10.1017/s0950268815002514).
- [3] U. Ryan et al. "Giardia: an under-reported foodborne parasite". In: *Int J Parasitol* 49.1 (2019), pp. 1–11. DOI: [10.1016/j.ijpara.2018.07.003](https://doi.org/10.1016/j.ijpara.2018.07.003).
- [4] J. Y. Ma et al. "Waterborne protozoan outbreaks: An update on the global, regional, and national prevalence from 2017 to 2020 and sources of contamination". In: *Sci Total Environ* 806 (2022), p. 150562. DOI: [10.1016/j.scitotenv.2021.150562](https://doi.org/10.1016/j.scitotenv.2021.150562).
- [5] K. Muhsen and M. M. Levine. "A systematic review and meta-analysis of the association between Giardia lamblia and endemic pediatric diarrhea in developing countries". In: *Clin Infect Dis* 55.Suppl 4 (2012), S271–S293. DOI: [10.1093/cid/cis762](https://doi.org/10.1093/cid/cis762).
- [6] A. A. M. Lima et al. "Etiology and severity of diarrheal diseases in infants at the semiarid region of Brazil: A case-control study". In: *PLoS Negl Trop Dis* 13.2 (2019), e0007154. DOI: [10.1371/journal.pntd.0007154](https://doi.org/10.1371/journal.pntd.0007154).
- [7] S. M. Pires et al. "Aetiology-specific estimates of the global and regional incidence and mortality of diarrhoeal diseases commonly transmitted through food". In: *PLoS One* 10.12 (2015), e0142927. DOI: [10.1371/journal.pone.0142927](https://doi.org/10.1371/journal.pone.0142927).
- [8] M. S. Al-Mekhlafi et al. "Giardiasis as a predictor of childhood malnutrition in Orang Asli children in Malaysia". In: *Trans R Soc Trop Med Hyg* 99.9 (2005), pp. 686–691. DOI: [10.1016/j.trstmh.2005.02.006](https://doi.org/10.1016/j.trstmh.2005.02.006).
- [9] J. Nematian, A. Gholamrezaiezad, and E. Nematian. "Giardiasis and other intestinal parasitic infections in relation to anthropometric indicators of malnutrition: a large, population-based survey of schoolchildren in Tehran". In: *Ann Trop Med Parasitol* 102.3 (2008), pp. 209–214. DOI: [10.1179/136485908x267876](https://doi.org/10.1179/136485908x267876).
- [10] L. Rojas-López, R. C. Marques, and S. G. Svärd. "Giardia duodenalis". In: *Trends Parasitol* 38.7 (2022), pp. 605–606. DOI: [10.1016/j.pt.2022.01.001](https://doi.org/10.1016/j.pt.2022.01.001).
- [11] S. N. Shaima et al. "Anthropometric indices of Giardia-infected under-five children presenting with moderate-to-severe diarrhea and their healthy community controls: Data from the Global Enteric Multicenter Study". In: *Child. (Basel)* 8.12 (2021). DOI: [10.3390/children8121186](https://doi.org/10.3390/children8121186).
- [12] E. T. Rogawski et al. "Use of quantitative molecular diagnostic methods to investigate the effect of enteropathogen infections on linear growth in children in low-resource settings: longitudinal analysis of results from the MAL-ED cohort study". In: *Lancet Glob Health* 6.12 (2018), e1319–e1328. DOI: [10.1016/s2214-109x\(18\)30351-6](https://doi.org/10.1016/s2214-109x(18)30351-6).

[13] S. Liteskare et al. "Prevalence of irritable bowel syndrome and chronic fatigue 10 years after Giardia infection". In: *Clin Gastroenterol Hepatol* 16.7 (2018), 1064–1072.e1064. DOI: [10.1016/j.cgh.2018.01.022](https://doi.org/10.1016/j.cgh.2018.01.022).

[14] D. S. Berkman et al. "Effects of stunting, diarrhoeal disease, and parasitic infection during infancy on cognition in late childhood: a follow-up study". In: *Lancet* 359.9306 (2002), pp. 564–571. DOI: [10.1016/s0140-6736\(02\)07744-9](https://doi.org/10.1016/s0140-6736(02)07744-9).

[15] P. J. Hotez, L. Savioli, and A. Fenwick. "Neglected tropical diseases of the Middle East and North Africa: review of their prevalence, distribution, and opportunities for control". In: *PLoS Negl Trop Dis* 6.2 (2012), e1475. DOI: [10.1371/journal.pntd.0001475](https://doi.org/10.1371/journal.pntd.0001475).

[16] United Nations Development Programme. *Human Development Report 2021/2022*. New York: UNDP, 2022.

[17] R. A. Alharbi et al. "Intestinal parasitoses and schistosome infections among students with special reference to praziquantel efficacy in patients with schistosomosis in Hajjah governorate, Yemen". In: *Ann Parasitol* 65.3 (2019), pp. 217–223. DOI: [10.17420/ap6503.203](https://doi.org/10.17420/ap6503.203).

[18] A. M. Al-Mekhlafi et al. "School-based prevalence of intestinal parasitic infections and associated risk factors in rural communities of Sana'a, Yemen". In: *Acta Trop* 163 (2016), pp. 135–141. DOI: [10.1016/j.actatropica.2016.08.009](https://doi.org/10.1016/j.actatropica.2016.08.009).

[19] H. M. Al-Mekhlafi. "Giardia duodenalis infection among rural communities in Yemen: a community-based assessment of the prevalence and associated risk factors". In: *Asian Pac J Trop Med* 10.10 (2017), pp. 987–995. DOI: [10.1016/j.apjtm.2017.09.011](https://doi.org/10.1016/j.apjtm.2017.09.011).

[20] S. A. Al-Qobati et al. "Intestinal parasitosis among Yemeni patients with cancer, Sana'a, Yemen". In: *J Egypt Soc Parasitol* 42.3 (2012), pp. 727–734.

[21] N. A. Alyousefi et al. "Factors associated with high prevalence of intestinal protozoan infections among patients in Sana'a City, Yemen". In: *PLoS One* 6.7 (2011), e22044. DOI: [10.1371/journal.pone.0022044](https://doi.org/10.1371/journal.pone.0022044).

[22] A. Al-Yousofi et al. "Prevalence of intestinal parasites among immunocompromised patients, children, and adults in Sana'a, Yemen". In: *J Trop Med* 2022 (2022), p. 5976640. DOI: [10.1155/2022/5976640](https://doi.org/10.1155/2022/5976640).

[23] L. A. Al-Shibani, A. A. Azazy, and H. A. El-Taweel. "Cryptosporidiosis and other intestinal parasites in 3 Yemeni orphanages: prevalence, risk, and morbidity". In: *J Egypt Soc Parasitol* 39.1 (2009), pp. 327–337.

[24] A. M. Al-Haddad and S. H. Baswaid. "Frequency of intestinal parasitic infection among children in Hadhramout governorate (Yemen)". In: *J Egypt Soc Parasitol* 40.2 (2010), pp. 479–488.

[25] L. A. Al-Shibani, A. A. Azazy, and J. H. Alhamd. "Intestinal parasitosis among apparently healthy workers at restaurants of Sana'a City, Yemen". In: *J Egypt Soc Parasitol* 39.1 (2009), pp. 263–268.

[26] J. Heimer et al. "Age-dependent decline and association with stunting of Giardia duodenalis infection among schoolchildren in rural Huye district, Rwanda". In: *Acta Trop* 145 (2015), pp. 17–22. DOI: [10.1016/j.actatropica.2015.01.011](https://doi.org/10.1016/j.actatropica.2015.01.011).

[27] S. A. Al-Haidari et al. "Intestinal schistosomiasis among schoolchildren in Sana'a Governorate, Yemen: Prevalence, associated factors and its effect on nutritional status and anemia". In: *PLoS Negl Trop Dis* 15.9 (2021), e0009757. DOI: [10.1371/journal.pntd.0009757](https://doi.org/10.1371/journal.pntd.0009757).

[28] Y. A. Raja'a et al. "Nutritional status of Yemeni schoolchildren in Al-Mahweet Governorate". In: *East Mediterr Health J* 7.1-2 (2001), pp. 204–210.

[29] Y. A. Raja'a and J. S. Mubarak. "Intestinal parasitosis and nutritional status in schoolchildren of Sahar district, Yemen". In: *East. Mediterr. Health J.* 12 (2006).

[30] Ministry of Public Health and Population (MoPHP). *National Nutrition Strategy for Yemen*. Government report. Ministry of Public Health and Population, Yemen. 2009.

[31] Central Statistical Organization. *Statistical Year Book for 2017*. <https://www.cso-yemen.com/content.php?lng=english&cid=131>. 2017.

[32] World Health Organization. *WHO AnthroPlus for Personal Computers Manual: Software for assessing growth of the world's children and adolescents*. Geneva: WHO, 2009.

[33] M. Cheesbrough. *District Laboratory Practice in Tropical Countries: Part 1*. London: Cambridge University Press, 2010.

[34] S. Vyas and L. Kumaranayake. "Constructing socio-economic status indices: how to use principal components analysis". In: *Health Policy Plan* 21.6 (2006), pp. 459–468. DOI: [10.1093/heapol/cz1029](https://doi.org/10.1093/heapol/cz1029).

[35] T. Alharazi et al. "Intestinal parasitic infection: prevalence, knowledge, attitude, and practices among schoolchildren in an urban area of Taiz city, Yemen". In: *AIMS Public Health* 7.4 (2020), pp. 769–777. DOI: [10.3934/publichealth.2020059](https://doi.org/10.3934/publichealth.2020059).

[36] M. A. Al-Areeqi et al. "First molecular epidemiology of *Entamoeba histolytica*, *E. dispar* and *E. moshkovskii* infections in Yemen: different species-specific associated risk factors". In: *Trop Med Int Health* 22.4 (2017), pp. 493–504. DOI: [10.1111/tmi.12848](https://doi.org/10.1111/tmi.12848).

[37] K. Hajissa et al. "Prevalence of intestinal protozoan parasites among school children in Africa: a systematic review and meta-analysis". In: *PLoS Negl Trop Dis* 16.2 (2022), e0009971. DOI: [10.1371/journal.pntd.0009971](https://doi.org/10.1371/journal.pntd.0009971).

[38] Jr. Stanley S. L. "Amoebiasis". In: *Lancet* 361.9362 (2003), pp. 1025–1034. DOI: [10.1016/s0140-6736\(03\)12830-9](https://doi.org/10.1016/s0140-6736(03)12830-9).

[39] Y. Fakhri et al. "The risk factors for intestinal Giardia spp infection: Global systematic review and meta-analysis and meta-regression". In: *Acta Trop* 220 (2021), p. 105968. DOI: [10.1016/j.actatropica.2021.105968](https://doi.org/10.1016/j.actatropica.2021.105968).

[40] E. Cifuentes et al. "Risk factors for Giardia intestinalis infection in agricultural villages practicing wastewater irrigation in Mexico". In: *Am J Trop Med Hyg* 62.3 (2000), pp. 388–392. DOI: [10.4269/ajtmh.2000.62.3.388](https://doi.org/10.4269/ajtmh.2000.62.3.388).

[41] D. A. Ahmed et al. "Giardiasis pattern among different age categories: childhood assemblage B proclaim endemicity". In: *Iran J Parasitol* 14.4 (2019), pp. 614–622.

[42] G. G. Hailu and E. T. Ayele. "Assessment of the prevalence of intestinal parasitic infections and associated habit and culture-related risk factors among primary schoolchildren in Debre Berhan town, Northeast Ethiopia". In: *BMC Public Health* 21.1 (2021), p. 112. DOI: [10.1186/s12889-020-10148-y](https://doi.org/10.1186/s12889-020-10148-y).

[43] S. H. Choy et al. "Prevalence and associated risk factors of Giardia infection among indigenous communities in rural Malaysia". In: *Sci Rep* 4 (2014), p. 6909. DOI: [10.1038/srep06909](https://doi.org/10.1038/srep06909).

[44] P. Chaves Mdel et al. "Giardia duodenalis prevalence and associated risk factors in preschool and school-age children of rural Colombia". In: *Biomedica* 27.3 (2007), pp. 345–351.

[45] I. M. Bakr et al. "Prevalence of intestinal parasitosis in a rural population in Egypt, and its relation to socio-demographic characteristics". In: *J Egypt Soc Parasitol* 39.1 Suppl (2009), pp. 371–381.

[46] S. Tandukar et al. "Intestinal parasitosis in school children of Lalitpur district of Nepal". In: *BMC Res Notes* 6 (2013), p. 449. DOI: [10.1186/1756-0500-6-449](https://doi.org/10.1186/1756-0500-6-449).

[47] L. H. Ang. "Outbreak of giardiasis in a daycare nursery". In: *Commun Dis Public Health* 3.3 (2000), pp. 212–213.

[48] J. S. Keystone, S. Krajden, and M. R. Warren. "Person-to-person transmission of *Giardia lamblia* in day-care nurseries". In: *Can Med Assoc J* 119.3 (1978), pp. 241–242, 247–248.

[49] T. S. Anuar et al. "Giardiasis among different tribes of Orang Asli in Malaysia: highlighting the presence of other family members infected with *Giardia intestinalis* as a main risk factor". In: *Int J Parasitol* 42.9 (2012), pp. 871–880. DOI: [10.1016/j.ijpara.2012.07.003](https://doi.org/10.1016/j.ijpara.2012.07.003).

[50] M. Norhayati et al. "Prevalence and some risk factors of *Giardia duodenalis* infection in a rural community in Malaysia". In: *Southeast Asian J Trop Med Public Health* 29.4 (1998), pp. 735–738.

[51] C. K. Santos et al. "Epidemiological, parasitological and molecular aspects of *Giardia duodenalis* infection in children attending public daycare centers in southeastern Brazil". In: *Trans R Soc Trop Med Hyg* 106.8 (2012), pp. 473–479. DOI: [10.1016/j.trstmh.2012.05.011](https://doi.org/10.1016/j.trstmh.2012.05.011).

[52] M. R. Rivero et al. "Giardia spp., the most ubiquitous protozoan parasite in Argentina: human, animal and environmental surveys reported in the last 40 years". In: *Parasitol Res* 119.10 (2020), pp. 3181–3201. DOI: [10.1007/s00436-020-06853-7](https://doi.org/10.1007/s00436-020-06853-7).

[53] A. P. Balderrama-Carmona et al. "Occurrence and quantitative microbial risk assessment of *Cryptosporidium* and *Giardia* in soil and air samples". In: *Int J Infect Dis* 26 (2014), pp. 123–127. DOI: [10.1016/j.ijid.2014.05.002](https://doi.org/10.1016/j.ijid.2014.05.002).

[54] O. Landa-Cansigno, J. C. Durán-Álvarez, and B. Jiménez-Cisneros. "Retention of *Escherichia coli*, *Giardia lamblia* cysts and *Ascaris lumbricoides* eggs in agricultural soils irrigated by untreated wastewater". In: *J Environ Manag* 128 (2013), pp. 22–29. DOI: [10.1016/j.jenvman.2013.04.049](https://doi.org/10.1016/j.jenvman.2013.04.049).

[55] B. Coronato-Nunes et al. "Giardia intestinalis infection associated with malnutrition in children living in northeastern Brazil". In: *J Infect Dev Ctries* 11.7 (2017), pp. 563–570. DOI: [10.3855/jidc.8410](https://doi.org/10.3855/jidc.8410).

[56] C. E. Boeke et al. "Intestinal protozoan infections in relation to nutritional status and gastrointestinal morbidity in Colombian school children". In: *J Trop Pediatr* 56.5 (2010), pp. 299–306. DOI: [10.1093/tropej/fmp136](https://doi.org/10.1093/tropej/fmp136).

[57] S. M. Matos et al. "Giardia duodenalis infection and anthropometric status in preschoolers in Salvador, Bahia State, Brazil". In: *Cad Saude Publica* 24.7 (2008), pp. 1527–1535. DOI: [10.1590/s0102-311x2008000700007](https://doi.org/10.1590/s0102-311x2008000700007).

[58] J. H. Botero-Garcés et al. "Giardia intestinalis and nutritional status in children participating in the complementary nutrition program, Antioquia, Colombia, May to October 2006". In: *Rev Inst Med Trop Sao Paulo* 51.3 (2009), pp. 155–162. DOI: [10.1590/s0036-46652009000300006](https://doi.org/10.1590/s0036-46652009000300006).

[59] Z. Simsek, F. Y. Zeyrek, and M. A. Kurcer. "Effect of *Giardia* infection on growth and psychomotor development of children aged 0–5 years". In: *J Trop Pediatr* 50.2 (2004), pp. 90–93. DOI: [10.1093/tropej/50.2.90](https://doi.org/10.1093/tropej/50.2.90).

[60] J. L. Tarleton et al. "Cognitive effects of diarrhea, malnutrition, and *Entamoeba histolytica* infection on school age children in Dhaka, Bangladesh". In: *Am J Trop Med Hyg* 74.3 (2006), pp. 475–481.

[61] J. L. Isaac-Renton et al. "A second community outbreak of waterborne giardiasis in Canada and serological investigation of patients". In: *Trans R Soc Trop Med Hyg* 88.4 (1994), pp. 395–399. DOI: [10.1016/0035-9203\(94\)90397-2](https://doi.org/10.1016/0035-9203(94)90397-2).

[62] S. Solaymani-Mohammadi and S. M. Singer. "Giardia duodenalis: the double-edged sword of immune responses in giardiasis". In: *Exp Parasitol* 126.3 (2010), pp. 292–297. DOI: [10.1016/j.exppara.2010.06.014](https://doi.org/10.1016/j.exppara.2010.06.014).