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Abstract
The dust-acoustic (DA) solitary waves and double layers structures of the dust-acoustic waves (DAWs) have been
investigated in the framework of Gardner approach, in a non-ideal dusty plasma system consisting of electrons,
ions and negatively charged dust grains. The non-ideal effects are examined by incorporating the van der Waals
(VDW) equation of state for the dust grains. Using reductive perturbation technique, the Gardner’s equation is
derived. The effects of the non-ideal parameters on the profiles of solitary wave and double layer structures are
discussed in some detail. It is found that the amplitude and width of both solitary waves and double layers are
significantly modified by the non-ideal parameters. Also, it is shown that the wave phase velocity undergoes a
significant change due to the presence of non-ideal effects in the system.
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1. INTRODUCTION

In recent years, the study of nonlinear structures (such as
solitary waves, shock waves, double layers,. . . ) associ-
ated with the propagation of dust-acoustic waves (DAWs)
has become one of the most important research topics in
dusty plasma physics due to the important role not only
in astrophysics space plasmas [1–4], but also in under-
standing the properties of laboratory plasmas [5, 6]. Over
the years, many investigations have been carried out
on the nonlinear structures of DAWs in a dusty plasma
physics, especially dust acoustic (DA) solitary waves, and
double layers (DLs) [7–18]. Some of these investigations
were limited to the framework of Sagdeev’s approach
(which is valid for large amplitude solitary waves) [11–
14, 16–19], while the other investigations are confined
to the framework of modify Korteweg-de Vries (MKdV)
equation [7, 16, 18], which is valid for small amplitude
limit, but not valid for a parametric regime, in which the
nonlinear term coefficient for Korteweg-de Vries (KdV)
equation equal zero. [19]. Another approach is Gardner’s
approach which leads to the standard Gardner equation

[20] that can be used to study the nature of solitary waves
and DLs in a dusty plasma physics [21–25]. Mannan
and Mamun [21] investigated the nonlinear propagation
of cylindrical and spherical Gardner solitons in a dusty
plasma having positively and negatively charged dust as
well as Maxwellian electrons and ions. Also, Mamun and
Mannan [22] explored nonplanar DA double layers in an
opposite polarity dusy plasma in the framework of Gard-
ner equation. Asaduzzaman and Mamun [23] derived
the Gardner equation and investigated the non-planar
dust-acoustic double layers in a dusty plasma having two
temperature ion, Maxwellian electrons and negatively
charged dust grians. Tasnim et al. [24] used Gardner’s
approach to describe DA solitary waves, and DLs in a
dusty plasma system consisting of negatively charged
mobile dust grains, Maxwellian electrons, and nonther-
mal ions of two distinct temperatures. Addition, Tasnim
et al. [25] derived the modified Gardner’s equation to
investigate the cylindrical and spherical DAWs in a dusty
plasma consisting of Maxwellian electrons, two temper-
atures nonthermal ions as well as negatively charged
dust grains. However, all of the above investigations are
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focused on the ideal behavior of the dust grains which
is a valid approximation used in most dusty plasmas in
which the size of dust grain is on the order of microme-
ters or less and for dilute plasmas. For dusty plasmas
with larger dust grain sizes, the intergrain interactions be-
tween the neighboring dust grains becomes increasingly
significant and hence, the ideal approximation breaks
down and usual equation of state used to describe ideal
dusty plasmas behavior has to be replaced by one that
accounts for non-ideal effects. In fact, dusty plasmas
usually have non-ideal behavior [26, 27]. Therefore, the
aim of this paper is to investigate the DA solitary waves
and DLs in a non-ideal dusty plasma system comprising
of negatively charged mobile dust grains and Maxwellian
electrons and ions, in the framework of extended Gard-
ner equation.

2. THEORETICAL MODEL

We consider a one-dimensional propagation of DAWs
in a non-ideal dusty plasma consisting of Boltzmann
electrons, ions and negatively charged dust grains. The
non-ideal effects are examined by incorporating the VDW
equation of state for the dust component. From Boltz-
mann distribution, the number densities of electrons ne

and ions ni are given by [28]

ne = ne0exp
(

eφ

kBTe

)
, (1)

ni = ni0exp
(
− eφ

kBTi

)
, (2)

where ni0 (ne0) and Ti (Te) are the unperturbed number
density and temperature of ions (electrons) respectively,
φ refers to electrostatic potential, e is the electron charge
and kB is Boltzmann constant. At equilibrium, the quasi-
neutrality condition is ni0=ne0+Zdnd0 where nd0 is un-
perturbed dust number density and Zd is the dust charge
number. The hydrodynamic equations governing nonlin-
ear propagation of DAWs in such non-ideal dusty plasma
model are given by

∂nd
∂t

+
∂

∂x
(ndud) = 0 , (3)

mdnd

(
∂

∂t
+ ud

∂

∂x

)
ud = Zdnd

∂φ

∂x
− ∂pd

∂x
, (4)

∂2 φ

∂x2 =
e
ϵ0
(ne − ni + Zdnd) , (5)

where nd and ud are the number density and flow velocity
of dust grains respectively, while md represents the dust
grain mass. Here, the non-ideal effects of dust grains
come in through the use of the VDW equation of state
[27]. Accordingly, the dust fluid pressure (pd) in Eq. (4)
can be expressed in terms of dust number density (nd)

by the VDW equation as

(pd + An2
d) (1Bnd) = ndkdTd , (6)

where Td is the dust temperature and kd=Rd/NA, NA
is the Avogadro number’ and Rd is the gas constant.
The coefficients A and B have their usual definitions,
namely, A= 9kdTc/8nc and B=1/nc, where the subscript
‘c’ indicating the respective values at the critical point.
To simplify the governing Eqs. (1)-(6), we defining the
dimensionless variables n = nd/nd0, u = ud/Cd ϕ =

Zdeφ/kBT0, P = pd/(nd0kdTd). The space and time
variables normalized as x → x/λD and t → tωpd. Here,
Cd, λD, ωpd and T0 are the DA speed, Debye length,
dust plasma frequency and the effective temperature,
respectively, are given by λD =

√
ϵ0kBT0/nd0Z2

de2, Cd =
√

kBT0/md, ωpd =
√

nd0Z2
de2/ϵ0md, and T0 = Zds Ti

where s=(1 − δ)/(1 + σδ). Therefore, the basic Eqs.
(3)-(5) can be rewritten in the following normalized form

∂n
∂t

+
∂

∂x
(nu) = 0 , (7)

n
(

∂

∂t
+ u

∂

∂x

)
u = n

∂ϕ

∂x
− β

∂P
∂x

, (8)

∂2ϕ

∂x2 =ρ , (9)

ρ = n+
1

1−δ
[δexp(σsϕ) −exp(−sϕ) ] . (10)

From Eq. (6) we can get the following normalized
equation of state

∂P
∂x

=
9
4

[
4

(3 − αn)2 − αθcn

]
(11)

where β = kdTd/kBT0, α = nd0/nc, θc = Tc/Td,
σ = Ti/Te, δ = ne0/ni0. Now, we assume
that the normalized potential ϕ is small, such that
ϕ≪ 1. As a consequence of this, the exponential
functions appearing in Eq. (10) can be expanding as
exp (jϕ) = 1+Jϕ +(Jϕ)2/2+(Jϕ)3/6+. . . . Therefore,
Eq. (10) simplifies to

ρ = n−1+c1ϕ+c2ϕ+c3ϕ3+. . . , (12)

where the coefficients c1, c2 and c3 are calculated to be

c1 = 1, c2 =
(1 − δ)(δσ2 − 1)

2(1 + δσ)2 ,

c3 =
(1 − δ)2(δσ3 + 1)

6(1 + δσ)3 .
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3. DERIVATION OF THE GARDNER
EQUATION

To derive the Gardner equation that governing behavior
of DAWs in such non-ideal dusty plasma system, we
employ the well known standard reductive perturbation
technique (RPT) [19]. Accordingly, the independent vari-
ables are stretched as

ξ = ϵ (x − λ0t) , τ= ϵ3t , (13)

where λ0 is the normalized linear phase velocity of the
DAWs and ϵ is small parameter (0 < ϵ < 1) measures
the strength of nonlinearity. here, the dependent physical
quantities are expanded in a power series of ϵ as


n
u
ϕ

P
ρ

 =


1
0
0
1
0

+
∞

∑
j=1

ϵj


nj
uj
ϕj
Pj
ρj

. (14)

Substituting Eq. (13) and Eq. (14) into the nor-
malized basic Eqs. (7)-(12), and then equating the
coefficients of different powers of ϵ. From the lowest
order (i.e., ϵ) equations, the following relations are
obtained

n1=− ϕ1

λ2
0−βγ

, (15)

u1=− λ0ϕ1

λ2
0−βγ

, (16)

P1=− γϕ1

λ2
0−βγ

, (17)

ρ1 = n1 + ϕ1 = 0 , (18)

where the coefficient γ is given by

γ =
9
4

[
4

(3 − α)2 − αθc

]
.

Substituting Eq. (15) into Eq. (18), we can obtain the
normalized phase velocity of DAW as

λ0 =
√

βγ + 1 . (19)

It is clear that the wave phase velocity (λ0) is modified
due to the contributions of the non-ideal effects of dust
component via the non-ideal parameters β and γ.
Figure 1 shows the variation of the normalized phase
velocity λ0 of DAW with the non-ideal parameters α =

nd0/nc and θc=Tc/Td, for fixed values of other parame-
ters β= 0.1, δ= 0.4 and σ= 0.05. It is obvious from this
figure that for small value of θc < 1, the phase velocity
increases with increasing α parameter while for larger

Figure 1. The normalized phase velocity λ0 of DAW against
α parameter for different values of θc along with β = 0.01,
δ = 0.4, and σ = 0.05.

values of θc ≥ 1, the values of λ0 diminishes. Phys-
ically, this means that increasing θc-parameter implies
a decrease in the dust temperature Td and therefore a
decrease in the thermal energy of the dust grains. As a
result, the plasma becomes strongly coupled and then
the effect of cohesive forces becomes dominant, which
leads to a reduction in the phase velocity of DAW. But
for smaller values of θc, the dust temperature increases,
thus increasing its thermal energy. As a result, the co-
hesive forces are reduced and the non-ideal behavior of
dust component approaches ideal behavior. In the other
hand, increasing the parameter α leads to an increase
in the dust number density, which reduces the volume
available to dust grains for free motion. Hence the vol-
ume reduction effects are increased and the dust plasma
becomes more non-ideal in nature.
Form the next order (ϵ2) terms, we obtain the following
equations

∂u2

∂ξ
+

∂n1u1

∂ξ
−λ0

∂n2

∂ξ
= 0 , (20)

β
∂p2

∂ξ
−λ0

∂u2

∂ξ
+ u1

∂u1

∂ξ
− λ0n1

∂u1

∂ξ
− ∂ϕ2

∂ξ
−n1

∂ϕ1

∂ξ
= 0 ,

(21)

∂P2

∂ξ
= γ

∂n2

∂ξ
+ γ1n1

∂n1

∂ξ
, (22)

ρ2 = n2 + ϕ2 + c2ϕ2
1 = 0 , (23)

where the parameter γ1 is given by

γ1 =
α

3 − α

[
2γ − 27

4
θc(1 − α)

]
,
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with the help of lowest order Eqs. (??)-(??), we solve
the Eqs. (20)-(22) and obtain the following relations

n2 =
1
2
(2λ2

0 + βγ1 + 1)ϕ2
1 − ϕ2 , (24)

u2 =
1
2

λ0

(
βγ1 + 2λ2

0−1
)

ϕ2
1 − λ0ϕ2 , (25)

P2 =
1
2

[
γ
(

2λ2
0γ + βγ1 + 1

)
+ γ1

]
ϕ2

1 − γϕ2 . (26)

Now, substituting Eq. (24) into Eq. (23) we get

ρ2 =
1
2

Aϕ2
1 = 0 , (27)

where A is given by

A = 1 + 2λ2
0 + βγ1 + 2c2 . (28)

It is obvious from Eq. (27) that ϕ1 ̸= 0 since A = 0
at its critical value β=βc. The solution of A (β=βc) = 0
yields the critical condition (βc) as

βc = − (3 + 2c2)

γ1 + 2γ
. (29)

So, for β around its critical value βc, i.e., |β−βc| ≡ϵ

corresponding to A = A0 where A0 is expressed by

A0 ≡ µ

(
∂A
∂β

)
β=βc

|β−βc| = ϵµAβ , (30)

where Aβ is given by

Aβ = 2γ + γ1 . (31)

Here, µ = 1 for β > βc and µ=−1 for β<βc. Hence,
when β ̸= βc, one an express ρ2 as

ρ2 ≈ 1
2

ϵµAβϕ2
1 . (32)

This means that for β=βc, ρ2 must be within the third
order Poisson’s equation. Therefore, the third order (ϵ3)
Poisson’s equation can be written as

∂2ϕ1

∂ξ2 = n3 +
1
2

µAβϕ2
1 + ϕ3 + 2c2ϕ1ϕ2 + c3ϕ3

1 . (33)

For the third order (ϵ3) continuity and momentum
equations we get:

∂n1

∂τ
−λ0

∂n3

∂ξ
+

∂n2u1

∂ξ
+

∂n1u2

∂ξ
+

∂u3

∂ξ
= 0 , (34)

∂u1

∂τ
− λ0

∂u3

∂ξ
+

∂u1u2

∂ξ
− λ0n2

∂u1

∂ξ
− λ0n1

∂u2

∂ξ
+ n1u1

∂u1

∂ξ

−
∂uϕ3

∂ξ
− n1

∂ϕ2

∂ξ
− n2

∂ϕ1

∂ξ
+ β

∂P3

∂ξ
= 0 ,

(35)

where P3 is given by

P3=γn3+γ1n1n2+
9α2

(3−α)4 n3
1 . (36)

Eliminating u3 between Eq. (34) and Eq. (35), using
Eqs. (15)-(17), along with Eqs.(24)-(26), and then sub-
stituting into third order Poisson’s equation Eq. (33) we
obtain the following Gardner’s equation

∂ϕ1

∂τ
+ Qϕ1

∂ϕ1

∂ξ
+ Rϕ2

1
∂ϕ1

∂ξ
+ S

∂3ϕ1

∂ξ3 = 0 , (37)

in which the coefficients Q, R and S are given by

Q = SµAβ , (38)

R =
1

4λ0
×[

1 + 2λ2
0 + 3

(
2λ2

0 + βγ1

)2
+ 4βγ1 +

54α2β

(3 − α)4 − 6c3

]
,

(39)

S =
1

2λ0
. (40)

4. SOLUTIONS OF GARDNER’S EQUA-
TION AND DISCUSSIONS

To obtain the steady-state solutions of Gardner’s equa-
tion (37), we introduce the following transformations [9]

η = ξ − U0τ, ϕ1(ξ, τ) = ϕ1(η) , (41)

where η is the transformed coordinates with respect
to a frame moving with velocity U0. Using the transfor-
mations Eq. (41) into Eq. (37) and after integrating once
with respect to η we obtain the following equation

d2ϕ1

dη2 =
U0

S
ϕ1 −

Q
2S

ϕ2
1 −

R
3S

ϕ3
1 , (42)

where the following boundary conditions were used [28]

ϕ1,
dϕ1

dη
,

d2ϕ1

dη2 → 0 as |η| → ±∞ .

Multiplying Eq. (42) by dϕ1/dη and integrating once with
using the above boundary conditions, we obtain the fol-
lowing energy equation

1
2

(
dϕ1

dη

)2
+ V(ϕ1) = 0 , (43)

where V(ϕ1) is the Sagdeev potential (SP), is given by

V (ϕ1) =
R

12S
ϕ4

1 +
Q
6S

ϕ3
1 −

U0

2S
ϕ2

1 . (44)

4.1. DA solitary waves
It is clear from Eq. (44) that V (ϕ1) = dV (ϕ1)/dϕ1 = 0
and d2V(ϕ1)/dϕ2

1 < 0 for ϕ1 = 0. Therefore, solitary
wave solution of Eq. (43) exist if V (ϕ1) = 0 for ϕ1 = ϕm.
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So, we get

U0 =
Q
3

ϕm1,2 +
R
6

ϕ2
m1,2 , (45)

and

ϕm1,2 = ϕm

(
1 ±

√
1 +

U0

V0

)
, (46)

where ϕm = −Q/R and V0 = Q2/6R. Now, substitut-
ing Eq. (45) into Eq. (43), we get

(
dϕ1

dη

)2
+ ϑϕ2

1(ϕ1 − ϕm1)(ϕ1 − ϕm2) = 0 , (47)

where ϑ = R/6S, therefore, the solitary wave solution
of Eq. (47) is given by [24,25]

ϕ1 =

[
1

ϕm2

(
1

ϕm2
− 1

ϕm1

)
cosh2

( η

W

) ]−1
, (48)

where W is the width of the solitary wave, is given by

W =
2√

ϑϕm1ϕm2
. (49)

Here, we are explored the propagation properties of
DA solitary waves in a non-ideal dusty plasma, wherein
the dust component state is described by the VDW equa-
tion.

Figures 2 and 3 show the profiles of the DA solitary
waves and its corresponding SP for different non-ideal
parameter θc and for fixed other plasma parameters, α =

1, β = 0.01, δ = 0.4, σ = 0.05, and U0 = 0.1. Figure 2 is
plotted when θc < 1 while Fig. 3 is plotted when θc > 1.
It is clear from Fig. 3(a) that, for all values of θc < 1, the
solitary wave amplitude is decreases with the increase
of θc while its width becomes wider. This is also clear
from Fig. 2(b) where we notice that by increasing θc < 1,
the depth of the SP decreases.

On the other hand, when θc > 1, the solitary wave
amplitude increases as θc increases, while its width be-
comes narrower as shown in the Fig. 3(a) or (b) where
Fig. 3(b) show that the depth of SP becomes deeper by
increasing the parameter θc > 1. In fact, this behavior
was expected because the larger values of θc indicates a
decrease in the temperature (Td) of dust grain, and thus
its thermal energy and the result, the cohesive forces
are increased and therefore, the non-ideal effect become
more important.

Moreover, Fig. 4 shows the profile of DA solitary wave
Fig.4(a) and its corresponding SP Fig. 4(b) for different
non-ideal parameter α. It is observed that the solitary
pulse amplitude increases with increasing α parameter
while its width decreases. This is also observed in the
Fig. 4(b), where we can see that as α increases, both
the width and depth of the SP increase. Furthermore,
Fig. 5 shows how the solitary wave profile (amplitude
and width) is change with larger values of α. As is clear

Figure 2. The profile of DA solitary wave ϕ1 with its corre-
sponding SP V(ϕ1) for different values of θc < 1 along with
α = 1, β = 0.01, δ = 0.4, σ = 0.05, and U0 = 0.1.

from this figure Fig. 5(a) or Fig. 5(b), increasing α in
rang 1 ≤ α ≤ 1.4 leads to a solitary wave with a smaller
amplitude and larger width.

On the other hand, we can notice from Fig. 5 that
for all values of α-parameter that are greater than the
value of θc-parameter (i.e., when α > 1.4), the solitary
waves amplitude (width) increases (decreases) with α-
parameter. This behavior was expected because the
linear phase velocity of DAW increase with the increase
of α parameter in the rang α > 1.4, but in the rang α < 1.4,
the linear phase velocity decreases with α (see Fig. 2).
In fact, the increase in the α parameter indicates an
increase in the number density of the dust grains (nd0)
which leads to reducing the volume available for free
movement of dust grains. Due to the reduction of volume,
the pressure is increasing, which leads to enhancing the
restoring force for driving the wave travel.
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Figure 3. The profile of DA solitary wave ϕ1 with its corre-
sponding SP V(ϕ1) for different values of θc > 1 along with
α = 1, β = 0.01, δ = 0.4, σ = 0.05, and U0 = 0.1.

4.2. Existence of a double layers
It is important to note that, the dust acoustic double
layer (DA-DL) solution of Eq. (43) requires that Sagdeev
potential Eq. (44) should satisfy the following conditions:

V (ϕ1) = 0 for ϕ1 = 0 and ϕ1 = ϕDLm , (50)

dV (ϕ1)

dϕ1
= 0 at ϕ1 = 0 and ϕ1 = ϕDLm . (51)

Accordingly, we obtain from Eq. (44) that

3U0 − QϕDLm − R
2

ϕ2
DLm = 0 , (52)

2U0 − QϕDLm − 2R
3

ϕ2
DLm = 0 . (53)

Figure 4. The profile of DA solitary wave ϕ1 with its corre-
sponding SP V(ϕ1) for different values of α < 1 along with
θc = 1.4, β = 0.01, δ = 0.4, σ = 0.05, and U0 = 0.1.

Equations (52) and (53) can be solved for propagation
speed U0 and amplitude ϕDLm of the DA-DL, resulting
the propagation speed of DA-DL is

U0 = −1
6

Rϕ2
DLm , (54)

while its amplitude is

ϕDLm = −Q
R

. (55)

Therefore, energy equation (43) can be taken the
following form

1
2

(
dϕ1

dη

)2
+

R
12S

ϕ2
1(ϕDLm − ϕ1) = 0, (56)
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Figure 5. The profile of DA solitary wave ϕ1 and its corre-
sponding SP V(ϕ1) for different values of α >= 1 along with
θc = 1.4, β = 0.01, δ = 0.4, σ = 0.05, and U0 = 0.1.

which admits the following DA-DL solution

ϕ1 (η) =
1
2

ϕDLm

[
1 − tanh

(
η

WDL

) ]
, (57)

where WDL is the width of the double layers

WDL =
√
−6S/Rϕ2

DLM. (58)

As is clear from Eq. (58), the DA-DL structures in such
non-ideal dusty plasma exist only whenever the condition
R/S < 0 is satisfied. It is noticed from Eq. (40) that the
coefficient S is always positive which leads to the higher
nonlinear coefficient R, given by Eq. (39) should be nega-
tive (R < 0) for the existence of DA-DL structures. Here,
we have numerically analyzed the sign of higher non-
linear coefficient R to obtain the plasma parameters for
the existence of DL structures in such non-ideal plasma.
Figure 6 shows the contour plot of the coefficient R of

higher nonlinear term in the (α, θc) space. It is seen from
Fig. 6 that the curve R = 0 divides the space (α , θc)

into two regions: one is the region in which the value
of R is positive R > 0, which lead to the formation of
solitary pluses (no double layers formed in this region).
The other one is the region in which R < 0 for which
values of plasma parameters lead to the formation of
DA-DL structures.

Figure 6. Contour plot of the nonlinear R coefficient in the
(α , θc) space along with, β = 0.05, σ = 0.05 and δ = 0.4.

The type of the DA-DL structure depends on the sign
of coefficient Q in the expression of ϕDLm (i.e., Eq. (56)).
If Q > 0, then ϕDLm becomes negative and a rarefactive
DA-DL is formed, while for all values of Q < 0, the ϕDLm

becomes positive and compressive DA-DL structures are
obtained.

Figures 7(a) and 7(b) show the DA-DL structures and
its corresponding SP respectively, for different values
of non-ideal parameter θc. It can be seen from these
figures that, only negative DL structure can be formed.
The DL structures exist only between two limited values
of ϕ1. One value is fixed at ϕ1 = 0, while the other
is at ϕ1 = ϕDLmdepending on the value of a non-ideal
parameter θc (see Fig. 7). Figure 7(a) or 7(b) shows that
the amplitude of the DA-DL structure is decreased with
the increase in θc. Also, Fig. 7(b) indicates that the depth
of the SP is decreased with the increase in θc-parameter,
which means that the DL width increases with θc.

In Fig. 8 we plot the DA-DL structures and its cor-
responding SP for the different values of non-ideal pa-
rameter α, in the ring 0.85 ≤ α ≤ 1 and for fixed val-
ues for other plasma parameters as β = 0.05, θc = 7,
σ = 0.05 and δ = 0.4. From this figure we can notice that
the amplitude of DA-DL decreases with the increase in
α-parameter. It is also found that the effect of increas-
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Figure 7. The profile of the DA- DL structures with its corre-
sponding SP for different θc values along with β = 0.05, α = 1,
σ = 0.05 and δ = 0.

ing α-parameter leads to enhancing of DA-DL width as
shown in Fig. 8(b) via decreasing of SP depth. Physi-
cally, increasing non-ideal parameter α means enhancing
the number density of dust grains nd0, which leads to
reducing the volume available for dust free travel, and
as a result, the non-ideal behavior of the dusty plasma
becomes more dominant. This is seen to be most signif-
icant for the DA-DL structure. Moreover, the SP profile
of the DL is shown in Fig. 9 for different values of δ pa-
rameter. It is observed that the amplitude of negative DL
increases with the increase of δ, but its width becomes
narrower.

5. CONCLUSION

The Gardner’s approach has been employed to investi-
gate the DA double layers in a non-ideal dusty plasma

Figure 8. The profile of the DA- DL structures with its corre-
sponding SP for different α values along with β = 0.05, θc = 7,
σ = 0.05 and δ = 0.4

system comprising of electrons, ions and negatively
charged dust grains. The non-ideal effects of dust grains
are modeled by VDW equation of state. The RPT was
used to derive the Gardner equation that describes the
nature of the DA solitary waves and DLs in the current
non-ideal plasma model. The solutions of Gardner equa-
tion have been used to explore the properties of the soli-
tary waves and double layers of dust acoustic waves. The
existence regions for solitary waves and double layers
have been explored numerically. The combined effects
of the non-ideal parameters on DA solitary waves and
double layer are discussed. It is found that the widths and
amplitudes of both solitary waves and DLs are affected
significantly by non-ideal parameters.
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Figure 9. The profile of the dust-acoustic DL structures for
different δ values along with β = 0.05, α = 1, θc = 7, and
σ = 0.05
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