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ABSTRACT  

A linear analysis was performed to investigate the basic properties of waves propagating in different 
directions in magnetized quantam plasma consisting of classical warm ions and relativistic degenerate 
electrons. We employ a quantum magnetohydrodynamic approach considering quantum corrections, spin 
effects in addition to relativity, and a polytropic index to obtain a generalized dispersion relation of the 
regarded plasma system. The considered system supports three types of magnetohydrodynamic waves: 
Alfven, fast, and slow magnetosonic waves. The obtained modified Alfven and magnetosonic dispersion 
relations are affected by the obliqueness factor, spin magnetization, and plasma beta 𝛽.The fast and slow 
modes were also altered owing to the Bohm potential and relativistic degenerate pressure impacts. 
Examination of the influences of these parameters revealed a significant modification of the phase velocity 
features of the magnetohydrodynamic waves. The results obtained may be applicable to relativistic 
magnetized quantum plasmas in astrophysical environments. 
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1. Introduction:   
Last decades have experienced tremendous 

growing in quantum plasma researches 
characterized by high density and low 
temperature, which are acquired considering 
quantum influences. In this sense, low-
frequency with large-scale approximation 
waves known as magnetohydrodynamics 
(MHD) waves, basically Alfven and 
magnetosonic waves, can be produced. Alfven 
waves are electromagnetic oscillations that 
propagate parallel to the ambient magnetic 

field, whereas magnetosonic waves can 
propagate in either perpendicular or oblique 
directions [1]. They play crucial roles in both 
natural and laboratory plasmas and have 
significant applications in energy transport and 
dissipation in different environments, such as 
space and astrophysical plasmas, solar winds, 
and in earth-bound effects [2,3]; for example, 
Alfven waves are responsible for the heating of 
the solar corona. Furthermore, Alfven waves 
can play a major role in thermonuclear fusion 

Characteristics of magnetohydrodynamic waves propagating in a 

magnetized relativistic degenerate plasma 
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plasmas, such as the International Tokamak 
Experimental Reactor (ITER) [4].  

The magnetohydrodynamic (MHD) model 
was first used [5] for the derivation of Alfven 
waves in a magnetized plasma. Thereafter, the 
quantum magnetohydrodynamic (QMHD) 
approach was introduced [6] to investigate 
waves generated in low-temperature degenerate 
plasma considering quantum effects. Alfven 
and magnetosonicmode properties have been 
reported in various quantum plasma systems by 
applying the QMHD theory. For example, 
Marklund and Eliasson studied magnetosonic 
solitons, considering the effects of the Bohm 
potential and electron spin [7]. Alfven soliton 
properties were investigated by Brodin and 
Marklund by considering the collective spin 
effects in magnetized pair plasma [8]. 
Moreover, two-dimensional obliquely 
propagating magnetosonic waves have been 
considered inmulti- [ 9,10] and two-component 
[11-13] quantum plasmas, considering 
obliqueness effects [9-13] and quantum 
diffraction [19-22] with the incorporation of 
electron spin influences [12,13]. Misra and 
Ghosh [14] studied fast magnetosonic shock-
like waves in dissipative quantum plasma with 
quantum tunneling and spin-alignment effects. 
Mushtaq and Vladimirov [15] described fast 
magnetosonic propagation in a linear regime 
and studied their properties in a large amplitude 
limit with the influence of diffraction, quantum 
statistics, and spin effects. Sahu et al. [16] 
analyzed the features of magnetosonic shock 
wave propagation in both small and arbitrary 
limits in the presence of magnetic diffusivity, 
Zeeman energy, and quantum diffraction 
impacts. Recently, Rahim et al. [17] 
investigated magnetosonic waves in separate 
spin-up and spin-down electron quantum 
plasmas based on the effects of quantum 
diffraction, dissipation, and spin polarization 
and traced their role in generating monotonic 
and oscillatory shock waves. Very recently, 
Hager et al. [18] examined the properties of fast 
and slow magnetohydrodynamic waves by 
considering the cumulative effects of the 
Coriolis force, dissipation influence, and 
quantum corrections represented by spin 

magnetization, quantum tunneling, and 
degeneracy forces. They explored the shock 
profile structures in a two-component plasma 
immersed in a uniform one-dimensional 
magnetic field.  

On the other hand, the electron speed may 
become relatively high and can approach the 
speed of light in vacuum in degenerate plasma 
environments such as the interiors of white 
dwarf stars and magnetars [19], in addition to 
some practical situations such as intense laser–
solid interaction experiments. In these cases, 
relativistic and quantum mechanical effects 
must be considered in a combined manner. 
Many authors have proposed various quantum 
plasma systems that consider degenerate 
relativistic impacts to investigate the features of 
electrostatic and electromagnetic waves in 
either unmagnetized [20-24] or magnetized [25-
31] relativistically degenerate quantum 
plasmas. Zhenni et al. [25] investigated the 
propagation of electron acoustic waves by 
considering the tunneling effect in addition to 
the relativistic degenerate effect in magnetized 
quantum plasma. Abdikian and Mahmood [27] 
studied the characteristics of acoustic solitons 
in a three-component magnetized quantum 
plasma considering quantum corrections and 
relativistic degenerate pressure using a quantum 
hydrodynamic (QHD) model. QHD equations 
were considered to investigate solitary waves 
propagating obliquely in magnetized quantum 
plasma with relativistic degenerate electrons 
and positrons in addition to Bohm potential 
influences [30]. Recently, Chen et al. [31] 
studied high-frequency surface waves using the 
QHD model, considering the influences of the 
Bohm potential, quantum statistical pressure 
with relativistic degenerate effects, and 
exchange correlation impacts in spin-1/2 
quantum plasmas. 

To the best of our knowledge, there has not 
been any research on combining the relativistic 
degenerate effects and quantum corrections in 
addition to the obliqueness impacts in spin-1/2 
quantum magneto-plasmas to study 
magnetohydrodynamic waves based on the 
QMHD theory. In this study, we explore the 
characteristics of magnetohydrodynamic waves 
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in a magnetic quantum plasma propagating 
either oblique, across, or along the magnetic 
field direction, taking the quantum tunneling 
and spin effects with relativistic degenerate 
electrons into account. The remainder of this 
paper is organized as follows. We introduce the 
basic set of system equations, including 
quantum effects, magnetization, and relativistic 
degenerate impacts, and develop the one-fluid 
QMHD equations in Section 2. Section.3 is 
devoted to the formulation of the dispersion 
relation, and further analytical and numerical 
discussions on linear waves propagating in 
different directions are presented in Section 3. 
Finally, we summarize our results in Section 4. 

 
1. Theoretical model and QMHD 

equations 

 
We considered a quantum plasma system 

consisting of a mixture of relativistic 
degenerate electrons and classical warm ions. 
Such quantum plasmas are assumed to be 
embedded in a constant background magnetic 
field lying in the 𝑥 − 𝑧 plane 𝑩𝟎. The quantum 
contributions of ions are neglected owing to 
their large masses compared to those of 
electrons. Here, we assume that the ion pressure 
obeys the law 𝑃𝑖 = 𝑃𝑖0(𝑛𝑖/𝑛𝑖0)

𝛾 where 𝑛𝑖 is the 
ion number density, 𝑛𝑖0 is its equilibrium 
density, 𝛾 is the ratio of the specific heat, and 
𝑃𝑖0 = 𝑛𝑖0𝑘𝐵𝑇𝑖 with 𝑘𝐵 is the Boltzmann 
constant and 𝑇𝑖 is the ion temperature. For a 
relativistic degenerate electron, the following 
equation of state is defined [32]: 

 

𝑃𝑒 =
𝑚𝑒
4𝑐5

24 𝜋2ℏ3
[𝑅 (2𝑅2 − 3)(1 + 𝑅2)1/2

+ 3 sinh−1(𝑅)], 
(1) 

 

where 𝑐 is the speed of light in vacuum, 𝑚𝑒 is 
the electron mass. The quantity 𝑅 is a 
dimensionless quantitythat measures the 
relativistic effect of electrons. 

𝑅 =
𝑝𝐹𝑒
𝑚𝑒𝑐

= 𝑅0 (
𝑛𝑒
𝑛𝑒0
)
1 3⁄

, 

in which 𝑝𝐹𝑒 = [3 𝜋
2ℏ3(𝑛𝑒 𝑛𝑒0⁄ )]1/3 is called 

the relativistic electronic Fermi momentum and 

𝑅0 = (𝑛𝑒0/𝑛𝑐)
1 3⁄  is the relativistic degeneracy 

parameter, where 𝑛𝑐 = 𝑚𝑒
3𝑐3 3𝜋2ℏ3⁄ ≈

5.9 × 1029cm−3 is a crucial density separates 
nonrelativistic and relativistic degeneracy 
regimes. In other words, the electrons become 
relativistically degenerate when their density >
5.9 × 1029cm−3 or when 𝑅0 > 1. It is easily 
noted that the gradient of the relativistic 
degenerate pressure can be written as  

𝛁𝑃𝑒 = 𝑛𝑒𝑚𝑒𝑐
2𝛁√1 + 𝑅2. (2) 

In this work, the relativistic degenerate 
electron is also under quantum effects, that is, 
the spin force and Bohm potential. Based on the 
above considerations, the dynamic equations of 
such quantum plasmas are given by 

𝜕𝑛𝑖
𝜕𝑡
+ 𝛁. (𝑛𝑖𝐮𝒊) = 0, (3) 

𝑛𝑚𝑖
𝐷𝐮𝐢
𝐷𝑡

= 𝑒𝑛𝑖(𝐄 + 𝐮𝒊 × 𝐁)

− 𝛾𝑘𝐵𝑇𝑖 (
𝑛𝑖
𝑛0
)
𝛾−1

𝛁𝑛𝑖 − 𝐑𝒆𝒊, (4) 
0 = −𝑛𝑒𝑒(𝐄 + 𝐮𝒆 × 𝐁) − 𝛁𝑃𝑒 + 𝐅𝑸 + 𝐑𝒆𝒊 , 

(5) 
where 𝐮𝒊(𝐮𝒆) and 𝑛𝑖(𝑛𝑒) are the vector velocity 
and number density of ions (electrons), 
respectively; 𝛾 is the ratio of specific heat;𝑒 is 
the electron charge; and 𝐄 is the electric field 
vector. Here, 𝐷 𝐷𝑡⁄ = 𝜕 𝜕𝑡⁄ + (𝒖𝒊. 𝛁) is the 
hydrodynamic derivative and 𝐅𝑸 represents the 

quantum force on electron, can be expressed as 
[33,34] 

𝐅𝑸 =
ℏ2𝑛𝑒
2𝑚𝑒

𝛁 [
∇2√𝑛𝑒

√𝑛𝑒
]

+ 𝑛𝑒𝜇𝐵 tanh (
𝜇𝐵𝐵

𝜀𝐹𝑒
)𝛁𝐵, 

(6) 
where first term is the Bohm potential gradient 
force due to the quantum tunneling effect while 
the second one represents the spin 
magnetization force in degenerate plasmas, 
𝜇𝐵 = 𝑒ℏ/2𝑚𝑒 denotes the Bohr magneton and 
𝐵 = |𝐁|. The tanh(𝜇𝐵𝐵/𝜀𝐹𝑒) function is the 
Langevin function owing to the magnetization 

of a spin 1/2 electron, ℇ𝐹𝑒 = [(3 𝜋
2𝑛𝑒0)

2/3ℏ2/

2𝑚𝑒] =  (1 2⁄ )𝑚𝑒𝑐
2𝑅0

2 is the relativistic Fermi 

energy. The quantity 𝐑𝒆𝒊 = 𝑛 𝑚𝑒𝜐𝑒𝑖(𝐮𝒊 −
𝐮𝒆) = 𝑒𝑛0𝜂 𝐉𝒑 [35] is the rate of the transfer of 

momentum from ions to electrons by collisions 
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with the current density 𝐉𝒑 and the plasma 

resistivity 𝜂 = 𝑚𝑒𝜈𝑒𝑖/𝑒
2𝑛0 where 𝜈𝑒𝑖 is the 

electron-ion collisional frequency. The quasi-
neutrality condition of this system is 𝑛𝑒 ≈ 𝑛𝑖 =
𝑛. Hence, the current density becomes: 

𝐉𝒑 = 𝑒𝑛𝑖𝐮𝒊 − 𝑒𝑛𝑒𝐮𝒆 ≈ 𝑒𝑛(𝐮𝒊 − 𝐮𝒆). (7) 
The relevant Maxwell equationsare  

𝛁 × 𝐁 = 𝜇0(𝐉𝒑 + 𝐉𝒎), (8) 

𝛁 × 𝐄 = −
𝜕𝐁

𝜕𝑡
, (9) 

𝛁 ∙ 𝐁 = 0 , (10) 

where 𝜇0 is the magnetic permeability of free 
space and 𝐉𝒎 = 𝛁 ×𝐌 is the electron spin 
magnetization current density, 𝐌 [33] is the 
mean magnetization:  

𝐌 = 𝑛𝑒𝜇𝐵 tanh (
𝜇𝐵𝐵

𝜀𝐹𝑒
) �̂�, 

(11) 

where �̂� = 𝐁/𝐵 is the unit vector in the 
direction of 𝐁. The displacement current in 
Eq.(8) was neglected because of its small value 
in the conducting medium compared to the total 
current density.  

To derive the basic governing equations of 
the QMHD model, we substitute 𝐮𝑒 from 
Eq.(7) into Eq.(5), we can express the electrical 
field in the form: 

𝐄 = −𝐮𝒊 × 𝐁 +
1

𝑒𝑛
(𝑱𝒑 × 𝐁− 𝛁𝑃𝐹𝑒 + 𝐅𝑸

+ 𝐑𝒆𝒊). (12) 
By eliminating 𝐄 from Eqs. (12) and (4) 

then, substituting from Eq.(8) to eliminate 𝐉𝒑 , 

we obtain: 

𝑛𝑚𝑖
𝐷𝐮𝐢
𝐷𝑡

=
1

𝜇0
(𝛁 × 𝐁) × 𝐁 − (𝛁 ×𝐌) × 𝐁

− 𝛁𝑃𝐹𝑒 + 𝐅𝑸

− 𝛾𝑘𝐵𝑇𝑖 (
𝑛

𝑛0
)
𝛾−1

𝛁𝑛. 
(13) 

By eliminating again 𝐄 between Eqs.(9) and 
(12), and using Eq.(8), we obtain the magnetic 
induction equation as 
𝜕𝐁

𝜕𝑡
= 𝛁 × (𝐮𝐢 × 𝐁) −

𝜂

𝜇0
[𝛁 × (𝛁 × 𝐁)]. 

(14) 
Because the MHD wave frequency was 

assumed to be much smaller than the ion 
gyrofrequency, the Hall effect was neglected in 
this study. Now, using the approximation 

tanh(𝜇𝐵𝐵/𝜀𝐹𝑒) ≈ 𝜇𝐵𝐵/𝜀𝐹𝑒, which is a valid 
approximation in most dense plasma systems 
where 𝜇𝐵𝐵 ≪ 𝜀𝐹𝑒, the basic set of one-fluid 
QMHD equations can be written as 

𝜕𝑛

𝜕𝑡
+ 𝛁. (𝑛𝐮𝐢) = 0, (15) 

𝐷𝐮𝐢
𝐷𝑡

=
1

𝜇0𝑛𝑚𝑖
(𝛁 × 𝐁) × 𝐁

−
1

𝑛𝑚𝑖
(𝛁 ×𝐌) × 𝐁

+
1

𝑚𝑖
(
𝜇𝐵
2𝐵

𝜀𝐹𝑒
)𝛁𝐵

+
ℏ2

2𝑚𝑒𝑚𝑖
𝛁(
∇2√𝑛

√𝑛
)

−
1

𝑛𝑚𝑖
𝛁𝑃𝐹𝑒

−
1

𝑛
𝑐𝑇𝑖
2 (

𝑛

𝑛0
)
𝛾−1

𝛁𝑛 , 
(16) 

𝜕𝐁

𝜕𝑡
= 𝛁 × (𝐮𝒊 × 𝐁) + 𝜂0∇

2𝐁, (17) 

where 𝜂0 = 𝜂/𝜇0 and 𝑐𝑇𝑖 = √𝛾𝑘𝐵𝑇𝑖/𝑚𝑖 is the 

nondegenerate ion thermal speed. Here, the 
vector identities 𝛁 × (𝛁 × 𝐁) = 𝛁 ∙ (𝛁 ∙ 𝐁) −
∇2𝐁, with (𝛁 ∙ 𝐁) = 0 are used.  

 
3. Generalized dispersion relation  

 

In order to investigate the linear features of 
QMHD waves in such relativistic degenerate 
plasma, we represent all variables (i.e.,𝑛 , 𝑃𝑒, 
𝐮𝐢, 𝐌 and 𝐁) as a sum of their equilibrium 
values (denoted ‘0’) and a small perturbed 
component (denoted ‘1’) as follows: 

(

 
 

𝑛
𝑃𝑒
𝐮𝐢
𝐁
𝑴)

 
 
=

(

 
 

𝑛0
𝑃𝑒0
𝟎
𝐁𝟎
𝐌𝟎)

 
 
+

(

 
 

𝑛1
𝑃𝑒1
𝐮𝟏
𝐁𝟏
𝐌𝟏)

 
 
, 

(18) 
where 𝛁𝑃𝑒1 can be obtained from Eq. (2) to be 

𝛁𝑃𝑒1 =
𝑚𝑒𝑐

2𝑅0
2

3√1 + 𝑅0
2
𝛁𝑛1. 

(19) 
Substituting the expressions (18) and (19) 

into the QMHD equations (15)– (17), and after 
linearizing, we obtain 

𝜕𝑛1
𝜕𝑡
+ 𝑛0(𝛁. 𝒖𝟏) = 0, (20) 
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𝜕𝒖𝟏
𝜕𝑡

= −
1

𝜇0𝑛0𝑚𝑖
[𝐁𝟎 × (𝛁 × 𝐁𝟏)]

+
1

𝑛0𝑚𝑖
[𝑩𝟎 × (𝛁 ×𝑴𝟏)]

−
𝐶eff
2

𝑛0
𝛁𝑛1 +

𝜇𝐵𝜀0
𝑚𝑖

𝛁𝐵1

+
ℏ2

4𝑚𝑒𝑚𝑖
𝛁(∇2𝑛1), (21) 

𝜕𝐁𝟏
𝜕𝑡

= 𝛁 × (𝐮𝟏 × 𝐁𝟎) + 𝜂0∇
2𝐁𝟏. (22) 

Here, 𝜀0 = 𝜇𝐵𝐵0 ℇ𝐹𝑒⁄  is the normalized Fermi-
Zeeman energy and 𝐶eff is the effective acoustic 
speed modified by the relativistic degenerate 
effects as 

𝐶eff = (
𝑐𝑞𝑠
2

3√1 + 𝑅0
2
+ 𝑐𝑇𝑖

2 )

1 2⁄

, 
(23) 

where 𝑐𝑞𝑠 = 𝑅0√𝑚𝑒𝑐2 𝑚𝑖⁄  denotes the 

relativistic quantum ion acoustic speed. In a 
one-dimensional Cartesian coordinates, 𝛁 =
(0,0, 𝜕/𝜕𝑧), consider the wave propagatation is 
directed along a z-axis, so 𝐤 = 𝑘𝒆𝒛, and the 
geometry of the external uniform magnetic field 
is supposed to be in the plane 𝑥 − 𝑧, 𝐁𝟎 =
𝐵0 sin 𝛼 𝐞𝒙 + 𝐵0 cos 𝛼 𝒆𝒛, where 𝛼 is the angle 
between the magnetic field and the unit vector 
𝐞𝒛, 𝐵0 is the constant amplitude of the external 
magnetic field. Thus, the linear set of MHD 
equations (20) – (22) is 

𝜕𝑛1
𝜕𝑡
+ 𝑛0

𝜕𝑢𝑧1
𝜕𝑧

= 0, (24) 
𝜕𝑢𝑥1
𝜕𝑡

− cos𝛼 (
𝑉𝐴
2

𝐵0
−
𝜇𝐵𝜀0
𝑚𝑖

)
𝜕𝐵𝑥1
𝜕𝑧

+
𝜇𝐵𝐵0𝜀0
n0𝑚𝑖

cos 𝛼 sin𝛼
𝜕𝑛1
𝜕𝑧

= 0, (25) 
𝜕𝑢𝑦1

𝜕𝑡
−
cos𝛼

𝐵0
(𝑉𝐴

2 −
𝜇𝐵𝐵0𝜀0
𝑚𝑖

)
𝜕𝐵𝑦1

𝜕𝑧
= 0, (26) 

𝜕𝑢𝑧1
𝜕𝑡

= −
sin𝛼

𝐵0
(𝑉𝐴

2 −
𝜇𝐵𝐵0𝜀0
𝑚𝑖

)
𝜕𝐵𝑥1
𝜕𝑧

+ 𝜇𝐵𝜀0
𝐵0 sin

2 𝛼

𝑛0𝑚𝑖

𝜕𝑛1
𝜕𝑧

+
ℏ2

4𝑚𝑒𝑚𝑖

∂3𝑛1
∂z3

−
1

𝑛0
𝐶eff
2 𝜕𝑛1
𝜕𝑧

+
𝜇𝐵𝜀0
𝑚𝑖

cos 𝛼
𝜕𝐵𝑧1
𝜕𝑧

 
(27) 

𝜕𝐵𝑥1
𝜕𝑡

= −𝐵0 sin𝛼
𝜕𝑢𝑧1
𝜕𝑧

+ 𝐵0 cos𝛼
𝜕𝑢𝑥1
𝜕𝑧

+ 𝜂0
∂2𝐵𝑥1
∂z2

, (28) 
𝜕𝐵𝑦1

𝜕𝑡
= 𝐵0 cos𝛼

𝜕𝑢𝑦1

𝜕𝑧
+ 𝜂0

∂2𝐵𝑦1

∂z2
, (29) 

𝜕𝐵𝑧1
𝜕𝑡

− 𝜂0
∂2𝐵𝑧1
∂z2

= 0. 
(30) 

Assuming a plane wave solution, all 
perturbed quantities are proportional to 
exp 𝑖(𝑘𝑧 − 𝜔𝑡) which means 𝜕 𝜕𝑡⁄ = −𝑖𝜔 and 
𝜕 𝜕𝑧⁄ = 𝑖𝑘, then 

𝜔𝑛1 − 𝑘n0𝑢𝑧1 = 0, (31) 

𝜔 𝑢𝑥1 + 𝑘𝑉𝐴
2
cos𝛼

𝐵0
(1 −

1

2
𝛽𝜀0

2)𝐵𝑥1

−
𝑘

2𝑛0
𝛽𝜀0

2𝑉𝐴
2 cos 𝛼 sin𝛼 𝑛1 = 0, (32) 

𝜔 𝑢𝑦1 + 𝑘𝑉𝐴
2
cos 𝛼

𝐵0
(1 −

1

2
𝛽𝜀0

2)𝐵𝑦1 = 0, (33) 

𝜔 𝑢𝑧1 − 𝑘𝑉𝐴
2
sin𝛼

𝐵0
(1 − 𝛽𝜀0

2)𝐵𝑥1

+
𝑘

𝑛0
(
𝛽𝜀0

2𝑉𝐴
2 sin2 𝛼

2

−
ℏ2𝑘2

4𝑚𝑒𝑚𝑖
− 𝐶eff

2 )𝑛1

+ 𝑘
𝛽𝜀0

2𝑉𝐴
2

2𝐵0
cos𝛼 𝐵𝑧1 = 0, (34) 

(𝜔 + 𝑖𝜂0𝑘
2)𝐵𝑥1 − 𝑘𝐵0 sin 𝛼 𝑢𝑧1

+ 𝑘𝐵0 cos𝛼 𝑢𝑥1 = 0, (35) 

(𝜔 + 𝑖𝜂0𝑘
2)𝐵𝑦1 + 𝑘𝐵0 cos𝛼 𝑢𝑦1 = 0, (36) 

(𝜔 + 𝑖𝜂0𝑘
2)𝐵𝑧1 = 0, (37) 

𝛽 = 𝑐𝑞𝑠
2 𝑉𝐴

2⁄ is the plasma-beta, 𝑉𝐴 =

𝐵0 √𝜇0𝑛0𝑚𝑖⁄  is the Alfven speed. 

 
3.1 Alfven waves  

Note that the set of equations (31)–(37) 
splits into two partial subsets. The first one is 
formed by equations (33) and (36), describing 
the y-components 𝐵𝑦1 and 𝑢𝑦1. These two 

equations lead to the following dispersion 
relation: 

𝜔2 − 𝐶𝐴
2𝑘2 cos2 𝛼 + 𝑖𝜂0𝑘

2𝜔 = 0. (38) 
This is a modified dispersion relation for 

Alfven waves, where 𝐶𝐴 is the modified Alfven 
velocity: 
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𝐶𝐴 = 𝑉𝐴√1−
1

2
𝛽𝜀0

2. 
(39) 

It should be noted here that the quantum 
effects on the Alfven velocity arise mainly due 
to the presence of the spin magnetization 
current in such quantum plasma. In the limiting 
case when 𝛽 ≪ 1, the modified Alfven speed 
𝐶𝐴 tends to a pure Alfven speed 𝑉𝐴 where 𝜀0 <
1 is valid in dense plasmas. The imaginary part 
of the dispersion relation in Eq. (38) controls 
the damping or growth of the modified Alfven 
waves. To discuss how this part affects Alfven's 
waves, we separate the dispersion relation into 
its real and imaginary parts by letting 𝜔 =
𝜔𝑟 + 𝑖𝜔𝑖, Using Equation (38), we obtain 𝜔𝑟

2 −
𝜂0𝑘

2𝜔𝑖 − 𝜔𝑖
2 − 𝐶𝐴

2𝑘2 cos2 𝛼 + 𝑖(2𝜔𝑖 +
𝜂0𝑘

2)𝜔𝑟 = 0. Because 𝜔𝑟 ≠ 0, the imaginary 

part is reduced to 𝜔𝑖 = −𝜂0𝑘
2 2⁄ , which 

reflects the energy dissipation owing to the 
plasma resistivity. Thus, the real dispersion 
relation for the modified Alfven waves 
becomes 

𝜔r
2 − 𝐶𝐴

2𝑘2 cos2 𝛼 +
1

4
𝜂0
2𝑘4 = 0. (40) 

This implies that the imaginary part of the 
dispersion relation (38) controls the damping of 
the modified Alfven waves. Now, we consider 
the ideal case (𝜂0 → 0), which leads to the 
dispersion relation  

𝜔2 − 𝐶𝐴
2𝑘2 cos2 𝛼 = 0. (41) 

It is observed that there is no effect of the 
electron spin-1/2 force on the modified Alfven 
waves because the spin is aligned parallel to the 
external magnetic field and therefore does not 
couple with the perturbed magnetic field. 
Moreover, this mode is independent of the 
Bohm potential and relativistic degeneracy. 
This phase speed can be oblique to the external 
magnetic field owing to its proportion to the 
term cos 𝛼. 

The phase velocity properties of the 
modified Alfven waves are shown in Fig. (1-2). 
Figure 1 illustrates the phase velocity of 
modified Alfven waves normalized by the light 
speed against the relativistic degeneracy 
parameter 𝑅0 for different values of 𝛼 . It is 
clear  that  the  phase  velocity  decreases  with 

Figure. 1:Phase velocity of the modified Alfven 
waves versus the relativistic degeneracy parameter 
for different values of 𝛼 where 𝐵0 = 2.79 GT 

 

 
Figure. 2: Linear dispersion relation for different 
values of 𝛽 where 𝛼 = 30°, 𝑅0 = 2. 

 

both 𝑅0 and 𝛼, and the decay is faster for a 
weak relativistic degeneracy factor and slower 
for a larger 𝑅0. The dispersion relation 
represented by the modified Alfven wave 
frequency versus the wave number shows linear 
behavior, which decreases as 𝛽  parameter 
acquires higher values, as depicted in Fig.2.  

 
3.2 Magnetosonic waves 

The second partial set of equations is formed 
by equations (28), (29), (31), (32), and (34) and 
described the variables 𝑢𝑥1 , 𝑢𝑧1, 𝐵𝑥1 and 𝑛1. 
The consistency condition yields the following: 
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𝑢𝑧1 =
𝜔

𝑘𝑛0
𝑛1, (42) 

 

𝑢𝑥1 = −
𝑘

𝜔

cos𝛼

𝐵0
𝑉𝐴
2 (1 −

1

2
𝛽𝜀0

2)𝐵𝑥1

+
𝑘

𝜔

𝛽𝜀0
2𝑉𝐴

2

2𝑛0
cos𝛼 sin𝛼 𝑛1, 

(43) 

𝐵𝑧1 = 0. (44) 

 
Substituting Eqs. (42-44) into (34) and (35) 

yields the following matrix: 
 

(

 
 
𝜔2 − 𝑖𝜂0𝑘

2𝜔 − 𝑘2𝐶𝐴
2 cos2 𝛼 −

𝐵0 sin𝛼

𝑛0
(𝜔2 −

1

2
𝑘2𝛽𝜀0

2𝑉𝐴
2 cos2 𝛼)

−𝑛0𝑘
2𝑉𝐴

2
sin 𝛼

𝐵0
(1 − 𝛽𝜀0

2) (𝜔2 +
𝑘2𝛽𝜀0

2𝑉𝐴
2 sin2 𝛼

2
−
ℏ2𝑘4

4𝑚𝑒𝑚𝑖
− 𝑘2𝐶eff

2 )
)

 
 
(
𝐵𝑥1
𝑛1
) = (

0
0
) 

 

 
It should be noted that the determinant of this 
matrix must vanish, which leads to a general 
dispersion relation (45). It is clear that the 
general dispersion relation of the MHD waves 
(45) is considerably modified by the quantum 

Bohm potential (via ℏ2) effect, electron spin-1/2 
effect (via 𝜀0), and relativistic degenerate 
pressure effects (via 𝐶eff). 
 

[(𝜔2 − 𝑖𝜂0𝑘
2𝜔− 𝑘2𝐶𝐴

2 cos2 𝛼)(𝜔2

+
1

2
𝑘2𝛽𝜀0

2𝑉𝐴
2 sin2 𝛼 −

ℏ2𝑘4

4𝑚𝑒𝑚𝑖

− 𝑘2𝐶eff
2 )]

− [(𝜔2 −
1

2
𝑘2𝛽𝜀0

2𝑉𝐴
2 cos2 𝛼) (1

− 𝛽𝜀0
2)𝑘2𝑉𝐴

2 sin2 𝛼] = 0, (45) 
For the purpose of discussion, we consider 

the ideal case in which the plasma has perfect 
conductivity (𝜂0 → 0), and the dispersion 
relation in (45) is reduced to (46) 

(𝜔2 − 𝑘2𝐶𝐴
2 cos2 𝛼) (𝜔2

+
1

2
𝑘2𝛽𝜀0

2𝑉𝐴
2 sin2 𝛼 −

ℏ2𝑘4

4𝑚𝑒𝑚𝑖
− 𝑘2𝐶eff

2 )

− 𝑘2𝑉𝐴
2(1 − 𝛽𝜀0

2) (𝜔2

−
1

2
𝑘2𝛽𝜀0

2𝑉𝐴
2 cos2 𝛼) sin2 𝛼 = 0, (46) 

 
 

To understand how the propagation modes 
are affected at different angles, we consider two 
limiting cases in Eq. (46) as: 

 

Perpendicular propagation (𝛼 = 𝜋 2⁄ ) 
When the propagation vector is 

perpendicular to the external magnetic field 𝐁0, 
the dispersion relation (46) takes the form: 
𝜔2

𝑘2
= 𝑉𝐴

2 + 𝐶eff
2 +

ℏ2𝑘2

4𝑚𝑒𝑚𝑖
−
3

2
𝛽𝜀0

2𝑉𝐴
2, (47) 

In this case, only the compressional (fast) 
magnetosonic waves propagate perpendicularly 
(the slow mode cannot propagate ⊥ 𝐁0). Their 
propagation is affected by quantum corrections, 
in addition to the effects ofrelativistic electron 
degeneracy and warm ions, as shown in Eq. 
(47).  

Parallel propagation ( 𝐁0 ∥ 𝐤)i.e., if 𝛼 = 0 
In the limiting case, when the external 

magnetic field is in the same direction as the 
wave vector, the dispersion relation (46) is 
reduced to 

 

(𝜔2 − 𝑘2𝐶𝐴
2) (𝜔2 − 𝑘2𝐶eff

2 −
ℏ2𝑘4

4𝑚𝑒𝑚𝑖
) = 0, 

(48) 
It is noted from (48) that the fast wave 

becomes incompressible (the fast magnatosonic 
wave cannot propagate along the magnetic 
field) and degenerates into the modified Alfven 
wave. 

𝜔2 − 𝑘2𝐶𝐴
2 = 0, (49) 

In this case, there is a transverse wave along 
the magnetic field and the wave vector. The 
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phase velocity is 𝑉𝑝 = 𝐶𝐴. However, the 

dispersion relation (48) indicates the possibility 
of another wave mode. This is an ordinary 
quantum ion acoustic wave with a dispersion 
relationship. 

𝜔2 = 𝑘2 (
ℏ2𝑘2

4𝑚𝑒𝑚𝑖
+ 𝐶eff

2 ), 
(50) 

As can be seen, no electric current density or 
magnetic field was associated with this wave. It 
is affected by quantum corrections (ℏ) in 
addition to the electron relativistic degeneracy 
parameter and the polytropic index of the ion. 
The phase velocity of this acoustic wave is. 

𝑉𝑝𝑎 = √
ℏ2𝑘2

4𝑚𝑒𝑚𝑖
+ 𝐶eff

2 . 
 

If we ignore the Bohm effect, 𝑉𝑝𝑎 = 𝐶eff. 
Asimilar result was found by Rf. 34.  

 
3.3 Arbitrary propagation for ideal MHD 

wave 

In this case, the dispersion relation (46) can 
be written as 

𝜔4 −𝜔2𝑘2𝐴 + 𝑘4𝐵 = 0, (51) 
where 𝐴 and 𝐵 are given by 

𝐴 = 𝐶eff
2 + 𝑉𝐴

2 + 𝑘2
ℏ2

4𝑚𝑒𝑚𝑖
− (
1

2
+ sin2 𝛼)𝛽𝜀0

2𝑉𝐴
2, 

𝐵 = 𝑉𝐴
2 cos2 𝛼 [(1 −

1

2
𝛽𝜀0

2) (
ℏ2𝑘2

4𝑚𝑒𝑚𝑖
+ 𝐶eff

2 )

−
1

4
𝑉𝐴
2𝛽2𝜀0

4 sin2 𝛼]. 

The solution of Eq. (51) corresponds to fast 
and slow magnetosonic waves and takes the 
form: 

𝜔2

𝑘2
=
𝐴

2
(1 ± √1 −

4𝐵

𝐴2
), (52) 

where spectrum (52) represents the 
dispersion relation of oblique propagation, 
which has two distinct modes: the (+) sign for 
the fast magnetosonic mode and the (−) sign 
for the slow magnetosonic mode, which are 
affected by quantum corrections (via 𝛽, ℏ) and 
obliqueness influence (𝛼) in addition to the ion 
polytropic index and electron relativistic 
degeneracy effects. Furthermore, the group 
velocity is: 

𝑉𝑔

= (
ℏ2𝑘

4𝑚𝑒𝑚𝑖
)
(𝑉𝑝

2 − 𝑉𝐴
2 cos2 𝛼 (1 − 𝛽𝜀0

2 2⁄ ))

𝑉𝑝(2𝑉𝑝
2 + 𝐴)

. 
(53) 

As clear from Eq. (52), the dispersion 
relation of oblique propagation is modified by 
the effective speed 𝐶eff . This speed appears to 
be affected by the ion polytropic index and 
electron relativistic degeneracy parameter 𝑅0. 
The way in which the effective speed is 
changed according to the relativistic 
degeneracy parameter 𝑅0 and consequently the 
wave velocities, is depicted in Fig. 3. Figure. 3 
indicates that increasing the relativistic 
degeneracy parameter leads to an increase in 
the effective speed in a curved manner for 
lower 𝑅0values and tends to be linear for higher 
values, while the warmness of ions via 𝑇𝑖 has 
no noticeable influence (we obtain the same 
curve for different 𝑇𝑖 values). 

The phase velocity characteristics of the 
getting modes in the oblique direction, in 
addition to those propagating either parallel or 
perpendicular  to the  magnetic field   direction,  

 

Figure.  3: Effective acoustic speed against relativistic 
degeneracy parameter 𝑅0. 

 
can be investigated graphically, as depicted in 
Figs. (4-8). Figures. 4 and 5 show a polar 
diagram of the phase velocity for the fast, slow 
and modified Alfven waves, in addition to the 
Alfven speed 𝑉𝐴.They clarified how the phase 
speed of each mode is affected by the 
propagation angle, relativistic degenercy 
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parameter 𝑅0 and 𝛽 factor. It is obvious that the 
modified Alfven waves propagate along the 
magnetic fields(𝛼 = 0, 𝜋) with the maximum 
phase velocity and decrease as 𝛼 increases. 
Their velocity equals zero in the transverse 
direction, that is, Alfven waves cannot 
propagate across the magnetic field while 
propagating with a faster velocity in the 
direction of the magnetic field. The phase 
velocity of the fast magnetosonic waves varies 
according to the propagation direction. It has 
the highest value for perpendicular propagation, 
which is described by Eq.(47), then they 
decrease slightly until they become 
incompressive and degenerate to a modified 
Alfven wave that travels at an Alfven speed 
along the magnetic field lines. Furthermore, 
slow magnetosonic waves behave like Alfven 
waves at lower speeds; they are both 
anisotropic. It is clear from these figures that 
as𝛽 factor increases (i.e., the Alfven speed 𝑉𝐴 
decreases), the velocity of the slow mode 
increases, whereas the fast waves become faster 
because of the Alfven speed in the 
prependicular (maximum) and oblique 
directions. A comparison between Fig. 4 
(𝑅0 = 2.5) and Fig.5 (𝑅0 = 1.2) reflects the 
influence of the relativistic degeneracy 
parameter 𝑅0.The phase velocities of the fast 
and slow modes increased as 𝑅0 decreased. 
Moreover, the fast mode, which can be 
considered approximately isotropic in Fig. 4, is 
no longer isotropic when(𝑅0 = 1.2, 𝛽 > 1) in 
Fig.5. 

The polar plots in Figs. 4 and 5 generally 
show the phase velocity of the wave modes. For 
additional specifications, we explore the 
features of Alfven and magnetosonic waves 

against magnetic field angle 𝛼 in Figs.6 and 7. 
Figure.6 displays the behavior of modified 
Alfven waves in addition to the fast and slow 
modes, where it can be seen that the modified 
Alfven waves and slow mode have a maximum 
velocity at 𝛼 = 0, and decreases as 𝛼increases. 
They vanish at 𝛼 = 𝜋 2⁄ ; whereas the fast wave 
velocity seems to be constant as 𝛼 increases. 
Fast waves appear to have the same phase 
velocity over all 𝛼 ranges. Figure. 7 exhibits the 
same waves for the same parameter unless the 

 

  
Figure. 4: Phase velocity polar diagram of fast, slow, 
modified Alfven waves and Alfven speed for different 
values of 𝛽 where 𝑅0 = 2.5, Ti = 5000K, 𝑘 = 1.(a) 𝛽 =
0.5, 𝐵0 = 3.45GT(b) 𝛽 = 5,𝐵0 = 1.09GT 

 

  
 

Figure. 5: Phase velocity polar diagram of fast, slow, 
modified Alfven waves and Alfven speed for different 
values of 𝛽 where 𝑅0 = 1.2, 𝑇𝑖 = 5000 K, 𝑘 = 1.(a) 𝛽 =
0.5, 𝐵0 = 0.55GT(b) 𝛽 = 5,𝐵0 = 0.174 GT. 

 

relativistic degeneracy parameter 𝑅0. It is clear 
that corresponding to 𝑅0 value (𝑅0 = 1.2) the 
initial values of the fast and modified Alfven 
waves are lower than those in Fig. 6 (𝑅0 =
2.5).The fast wave velocity Vfast increases as 𝛼 
increases, whereas the Alfven wave velocity 
decreases slowly compared to their behavior, as 
shown in Fig.6. Meanwhile, slow waves have 
the same initial velocity in both figures, but 
decrease faster as 𝛼 increases, as shown in 
Fig.7.  

The dependence of phase velocity on 
relativistic degeneracy parameter 𝑅0 is shown 
in Fig. 8. It can be seen that the fast mode has 
larger values for small 𝑅0values, then drops to a 
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Figure. 6: Phase velocity of fast, slow and modified 
Alfven waves versus 𝛼 where 𝑅0 = 2.5, 𝑇𝑖 = 5000℃, 
𝑘 = 1 and 𝛽 = 0.5. 

 
minimum value, after which it increases 
slightly in a linear manner. The modified 
Alfven wave velocity has large values for 
smaller 𝑅0 values and decreases as 𝑅0 values 
progress. Differently, the slow-mode velocity 
decreases slowly for small 𝑅0 values, but the 
decrease tends to be linear as 𝑅0 values increase 
until they propagate with the same velocity as 
the modified Alfven waves when (𝑅0 > 6). 

 
4. Conclusion 

In this work, the linear propagation of 
oblique magnetohydrodynamic waves in 
magnetized quantum plasma, including the 
effects of quantum diffraction, spin 
magnetization, ion polytropic pressure, and 
electron relativistic degenerate pressure, was 
studied extensively. We obtained a generalized 
dispersion relation by using the QMHD 
approach and linear analysis. The dispersion 
relation is reduced to three different equations 
according to the propagation direction 
described by the angle 𝛼. 

Fast magnetosonic waves are produced for 
perpendicular propagation. Their propagation is 
modified by quantum corrections, in addition to 
the effects of relativistic electron degeneracy 
and warm ions. Parallel propagation introduces 
modified transverse Alfven waves that are 
altered by quantum spin magnetization and 
plasma beta 𝛽 factors. In  the  case  of  arbitrary 

Figure. 7: Phase velocity of fast, slow and modified 
Alfven waves versus 𝛼 where 𝑅0 = 2.5, 𝑇𝑖 = 5000℃, 
𝑘 = 1 and 𝛽 = 5. 

 

Figure. 8: Phase velocity of fast, slow and modified 
Alfven waves versus 𝑅0 where 𝐵0 = 2.79 𝐺𝑇,𝛼 = 30°, 
𝑇𝑖 = 5000𝐾, 𝑘 = 1 . 

 
propagation, it was found that fast and slow 
magnetosonic modes propagate under the 
influence of quantum corrections (via 𝛽,ℏ) and 
obliqueness impact (𝛼) in addition to the ion 
warmness index and electron relativistic 
degeneracy effect 𝐶eff. Numerical analysis 
shows that fast modes propagate faster than 
modified Alfven waves do. However, the slow-
mode phase velocity was lower than that of the 
modified Alfven wave. It was observed that the 
magnetohydrodynamic wave properties were 
overwhelmingly influenced by the relativistic 
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degenerate parameter, plasma beta, and angle 
between the wave vector and magnetic field 
lines (𝛼). The results of this work are general 
and can be applied to the study of oblique 
propagation of MHD waves in magnetized 
quantum plasma systems, and may be useful in 
understanding the energy transport mechanism 
in compact objects such as white dwarfs, where 
the influence of relativistic electron degeneracy 
becomes important. 
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