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ABSTRACT: The nonlinear cylindrical dust ion acoustic waves are studied in a collisional unmagnetized dense 

dusty plasma medium containing inertialess degenerated electrons and positrons, fluid ions, negatively charged dust 

fluid and neutrals in the background, including exchange-correlation effects of both electrons and positrons. 

Employing the reductive perturbation method, the damped Kadomstev–Petviashvili equation is derived in the 

framework of two-dimensional cylindrical geometry. An approximate analytical solution of this equation is also 

discussed. The quantum and geometrical effects on the dust ion acoustic waves have been investigated. It is found 

that the dust ion acoustic wave is modified by quantum diffraction, Fermi statistics and exchange-correlation 

potential. Moreover, it has been found that the nebulon structures of quantum dust ions acoustic wave are formed due 

to the Cartesian geometry and the transverse perturbation. It is also observed that the nebulon structure is significantly 

modified by the exchange-correlation effects. 

I. Introduction  

It is well known that the dust ion acoustic waves 

(DIAWs) are ion acoustic waves modified by the 

presence of massive charged dust particles in 

ordinary electron-ion plasma. The DIAWs were 

investigated theoretically by Shukla and Silin [1] and 

experimentally confirmed in low-temperature dusty 

plasma [2, 3]. In the past years, a number of 

researchers have investigated the basic properties of 

DIAWs in different dusty plasma systems [4-10]. 

Most of those investigations were limited to the 

classical plasmas, which are generally characterized 

by low density and high temperature. However, when 

the plasma particles have a very low temperature and 

high-number density, the de Broglie wavelength of 

the plasma particle could be comparable to the 

dimension of the plasma system (i.e. the particle 

Debye length becomes smaller than the thermal de-

Broglie wavelength). Such dense plasma behaves 

like a Fermi gas, so the quantum effects may play a 

central role in the behavior of plasma particles and in 

the properties of the wave modes [11,12].  

Nowadays, dense plasma has become one of the most 

important areas of research in plasma physics due to 

its vital role in many fields of science such as dense 

astrophysical systems, [13] microelectronic devices 

[14] and laser plasmas [15].  

Quantum effects on cylindrical dust-ion acoustic waves in a 

semiclassical dense dusty Plasma 
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Over the past years, many theoretical investigations 

have been conducted on propagation features of 

DIAWs in a quantum dusty plasma medium assuming 

stationary dust grains [16-21]. However, this 

assumption may be a good approximation when the 

dust grains are heavy and large in comparison to the 

ions, but it is not a general case.  In fact, the dust grains 

are existed in most environments of space and 

astrophysical dusty plasmas from smaller to larger 

size [21] where the mass ratio between dust grain and 

ion lies in the range 103-104 and the number of 

charges residing on the dust grain is also in the range 

103-104 as required. In such plasmas, the dynamics 

of dust grains may be taken into account along with 

ions dynamics. Accordingly, several authors have 

investigated the propagation characteristics of 

quantum DIAWs in dusty plasmas, including the 

dynamics of dust grains as well as ions [21-25]. For 

example, Emadi and Zahed [24] have investigated the 

linear and nonlinear properties of DIAWs in a 

magnetized multi-component quantum dusty plasma 

composed of inerialess degenerate electrons and 

positrons, inertial cold ions and negatively charged 

dust particles. They are considering the effects of 

quantum diffraction and quantum statistics. Mushtaq 

et al. [25] have studied the damped DIAWs in a 

collisional, unmagnetized quantum dusty plasma 

which contains degenerate electrons, ions, neutrals 

and negatively charge dust grains, including quantum 

electron exchange-correlation effect. Most of these 

works [21-25] were based on the one-dimensional 

Korteweg–deVries equation. Ali et al. [26] have 

examined the nonlinear characteristics of the two-

dimensional (2D) cylindrical quantum DIAWs 

considering the effects of quantum statistics and 

quantum Bohm potential in a collisionless 

unmagnetized dusty plasma. They found that the 

quantum DIAWs is significantly affected by 

cylindrical geometry. Recently, Khaled et al. [27] 

have investigated the nonlinear propagation of ion 

acoustic waves in a quantum electron-positron-ion 

plasma, in the framework of Zakarov-Kuznetsov 

equation, including the influence of electron/positron 

exchange-correlation effect. To the best of our 

knowledge there is no detailed investigation about the 

propagation of DIAWs in a 2D cylindrical quantum 

dusty plasma consisting of inertialess degenerate 

electrons and positrons, inertial ions and negatively 

charged dust particles, including quantum 

electron/positron exchange-correlation effects.  

Therefore, the aim of this paper is to examine the 

nonlinear structures of cylindrical DIAWs in a 

collisional unmagnetized quantum dusty plasma 

medium consisting of degenerate electrons and 

positrons, mobile ions and negatively charged dust 

grains as well as neutrals in the background, and then 

we examine the influence of quantum parameters and 

non-planar geometry on the nonlinear structures of the 

quantum DIAWs in such dusty plasma model. 

This paper is organized as follows. Sect. 2 provides 

the basic set of equations for cylindrical DIAWs in a 

dense dusty plasma under consideration. The 

nonl inear  damped cyl indr ical  Kadomstev –

Petviashvili (DCKP) equation in 2D cylindrical 

geometry is derived in Sec. 3. The solitary wave 

solution of the DCKP equation is obtained in Sect. 4. 

Numerical results and discussion are provided in Sect. 

5 .  The  conc lus ion  i s  p resen ted  in  Sec t .6 . 

2. Mathematical Model  

We consider an unmagnetized collisional multi-

component dense dusty plasma system consisting of 

inertialess degenerated electrons, inertialess 

degenerated positrons, inertial ions and negatively 

charged dust grains, in the presence of neutrals in the 

background. We assume a collision effect between 

dust grains and neutrals while the collisions of ions or 

electrons/positrons with neutrals are neglected due to 

lighter mass. The quantum behavior of both dust 

grains and ions is neglected due to their heavy mass. 

Accordingly, the governing equations of DIAWs, 

including the dynamics of dust grains as well as ions 

dynamics are given by 

𝜕𝑛𝑗

𝜕𝑡
+ 𝛁 ∙ (𝑛𝑗𝒖𝑗) = 0, (1) 

𝜕𝒖𝑖
𝜕𝑡
+ (𝒖𝑖 ∙ 𝛁)𝒖𝑖 = −

𝑒

𝑚𝑖
𝛁𝜑, (2) 

𝜕𝒖𝑑
𝜕𝑡

+ (𝒖𝑑 ∙ 𝛁)𝒖𝑑 =
𝑍𝑑𝑒

𝑚𝑑
𝛁𝜑 − 𝜈𝑑𝑛𝒖𝑑, (3) 

∇2𝜑 =
𝑒

𝜖0
(𝑍𝑑𝑛𝑑 + 𝑛𝑒 − 𝑛𝑝 − 𝑛𝑖), (4) 

where 𝑛𝑗, 𝒖𝑗, and 𝑚𝑗 are the number density, fluid 

velocity and mass of ions (𝑗 = 𝑖) and dust grains (𝑗 =
𝑑). 𝜑 is electrostatic potential, 𝑍𝑑 is the number of 

charges residing on the dust grain, 𝑒 is the electronic 

charge, 𝜈𝑑𝑛 is the collisional frequency of dust- 

neutrals and 𝑛𝑒(𝑛𝑝) represents the number density of 

degenerated electrons (positrons). We consider the 

quantum effects of electrons and positrons are 

encountered in terms of Fermi pressure, Bohm 

potential and exchange-correlation potential. 

Therefore, the inertialess momentum equation for 

electrons/positrons is given by 
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±𝑒∇𝜑 −
𝛁𝑃𝐹𝑠
𝑛𝑠

+
ℏ2

2𝑚
𝛁(
∇2√𝑛𝑠

√𝑛𝑠
) − 𝛁𝑉𝑠

𝑥𝑐

= 0, 

(5) 

 where the sign (+) with electrons while and the sign 

(–) for positrons, 𝑚 = 𝑚𝑒 = 𝑚𝑝 is the mass of 

electron or positron and ℏ is the Planck constant 

divided by 2𝜋. Here,  𝑃𝐹𝑠 is the Fermi pressure of 

plasma species 𝑠 (𝑠 = 𝑒 for electrons and 𝑠 = 𝑝 for 

positrons). In a 2D Fermi gas, 𝑃𝐹𝑠 = 𝐸𝐹𝑠𝑛𝑠
2 2𝑛𝑠0,⁄ , 

where 𝑛𝑠0 is the equilibrium number density of 

plasma species 𝑠 and 𝐸𝐹𝑠(= 𝑘𝐵𝑇𝐹𝑠) is the Fermi 

energy, in which 𝑇𝐹𝑠 = (2𝜋
2𝑛𝑠0,)

2 3⁄
ℏ2 2𝑚𝑘𝐵⁄  

represents the Fermi temperature and 𝑘𝐵 is the 

Boltzmann constant. The equilibrium number 

densities of electrons 𝑛𝑒0, positrons 𝑛𝑝0, ions 𝑛𝑖0, and 

dust grains 𝑛𝑑0 are related by the charge neutrality 

condition as: 𝑍𝑑𝑛𝑑0 + 𝑛𝑒0 = 𝑛𝑝0 + 𝑛𝑖0. In Eq. (5), 

𝑉𝑠
𝑥𝑐represents the exchange-correlation potential 

which is given by [25, 27] 

𝑉𝑠
𝑥𝑐 = −(

0.985𝑒2

4𝜋𝜖0
)𝑛𝑠

1 3⁄ [1

+
0.034

𝑎𝐵𝑛𝑠
1 3⁄
ln (1

+ 18.367𝑎𝐵𝑛𝑠
1 3⁄ )], 

(6) 

where 𝑎𝐵 = 4𝜋𝜖0 ℏ
2 𝑚𝑒2⁄  is the Bohr radius and 𝜖0 

is the permittivity of free space. In the dense plasmas, 

Eq. (6) can be simplified to [25, 27] 

𝑉𝑠
𝑥𝑐 = −(

1.6𝑒2

4𝜋𝜖0
)𝑛𝑠

1 3⁄ + (
5.62ℏ2

𝑚
)𝑛𝑠

2 3⁄ . (7) 

Now, we introduce the following dimensionless 

variables: 

𝑁𝑑 =
𝑛𝑑
𝑛𝑑0

, 𝑁𝑖 =
𝑛𝑖
𝑛𝑖0
, 𝑁𝑒 =

𝑛𝑒
𝑛𝑒0
,   

𝑁𝑝 =
𝑛𝑝

𝑛𝑝0
, 𝑽𝑑,𝑖 =

𝒖𝑑,𝑖
𝐶𝑖
, 𝜙 =

𝑒𝜑

2𝐸𝐹𝑠
,  

∇→
𝐶𝑖
𝜔𝑝𝑖

∇, 𝑡 → 𝜔𝑝𝑖𝑡, (8) 

where 𝜔𝑝𝑖 = (𝑒
2𝑛𝑖0 𝜖0𝑚𝑖⁄ )1 2⁄  is the ion plasma 

frequency and 𝐶𝑖 = (2𝐸𝐹𝑒 𝑚𝑖⁄ )1 2⁄  is the ion-sound 

speed. Introducing the dimensionless variables (8) 

into Eqs. (1)-(7), the normalized basic equations of 

DIAWs can be written in 2D cylindrical coordinates 

as: 

𝜕𝑁𝑑
𝜕𝑡

+
1

𝑟

𝜕

𝜕𝑟
(𝑟𝑁𝑑𝑉𝑑𝑟) +

1

𝑟

𝜕

𝜕𝜃
(𝑁𝑑𝑉𝑑𝜃) = 0, (9) 

𝜕𝑉𝑑𝑟
𝜕𝑡

+ 𝑉𝑑𝑟
𝜕𝑉𝑑𝑟
𝜕𝑟

+
𝑉𝑑𝜃
𝑟

𝜕𝑉𝑑𝑟
𝜕𝜃

−
𝑉𝑑𝜃
2

𝑟
− 𝜇𝑑

𝜕𝜙

𝜕𝑟
+ 𝜈𝑉𝑑𝑟 = 0, (10) 

𝜕𝑉𝑑𝜃
𝜕𝑡

+ 𝑉𝑑𝑟
𝜕𝑉𝑑𝑟
𝜕𝑟

+
𝑉𝑑𝜃
𝑟

𝜕𝑉𝑑𝑟
𝜕𝜃

+
𝑉𝑑𝑟𝑉𝑑𝜃
𝑟

− 𝜇𝑑
1

𝑟

𝜕𝜙

𝜕𝜃
+ 𝜈𝑉𝑑𝜃 = 0, (11) 

𝜕𝑁𝑖
𝜕𝑡
+
1

𝑟

𝜕

𝜕𝑟
(𝑟𝑁𝑖𝑉𝑖𝑟) +

1

𝑟

𝜕

𝜕𝜃
(𝑁𝑖𝑉𝑖𝜃) = 0, (12) 

𝜕𝑉𝑖𝑟
𝜕𝑡

+ 𝑉𝑖𝑟
𝜕𝑉𝑖𝑟
𝜕𝑟

+
𝑉𝑖𝜃
𝑟

𝜕𝑉𝑖𝑟
𝜕𝜃

−
𝑉𝑖𝜃
2

𝑟
+
𝜕𝜙

𝜕𝑟
= 0, (13) 

𝜕𝑉𝑖𝜃
𝜕𝑡

+ 𝑉𝑖𝑟
𝜕𝑉𝑖𝑟
𝜕𝑟

+
𝑉𝑖𝜃
𝑟

𝜕𝑉𝑖𝑟
𝜕𝜃

+
𝑉𝑖𝑟𝑉𝑖𝜃
𝑟

+
1

𝑟

𝜕𝜙

𝜕𝜃
= 0, (14) 

1

𝑟

𝜕

𝜕𝑟
(𝑟
𝜕𝜙

𝜕𝑟
) +

1

𝑟2
𝜕2𝜙

𝜕𝜃2

= 𝛽𝑑𝑁𝑑 + 𝜇𝑁𝑒 − 𝜇𝑝𝑁𝑝 −𝑁𝑖 , (15) 

and 

𝐻2

2

1

√𝑁𝑒
[
1

𝑟

𝜕

𝜕𝑟
(𝑟
𝜕√𝑁𝑒
𝜕𝑟

) +
1

𝑟2
𝜕2√𝑁𝑒
𝜕𝜃2

] + 𝜙

−
1

4
𝑁𝑒 + 𝛼𝑁𝑒

1 3⁄ − 𝛾𝑁𝑒
2 3⁄

= 𝛼 − 𝛾 −
1

4
, (16) 

𝐻2

2

1

√𝑁𝑝
[
1

𝑟

𝜕

𝜕𝑟
(𝑟
𝜕√𝑁𝑝

𝜕𝑟
) +

1

𝑟2
𝜕2√𝑁𝑝

𝜕𝜃2
] − 𝜙

−
𝜎

4
𝑁𝑝 + 𝑝

1 3⁄ 𝛼𝑁𝑝
1 3⁄

− 𝑝2 3⁄ 𝛾𝑁𝑝
2 3⁄

= 𝑝1 3⁄ 𝛼 − 𝑝2 3⁄ 𝛾 −
𝜎

4
, (17) 

where 𝜇𝑑 = 𝑍𝑑𝑚𝑖 𝑚𝑑⁄  is the mass ratio of ion-to-dust, 

𝜇 = 𝑛𝑒0 𝑛𝑖0⁄  is the equilibrium density ratio of 

positron-to-ion, 𝑝 = 𝑛𝑝0 𝑛𝑒0⁄  is the equilibrium 

density ratio of positron-to-electron density, 𝛽𝑑 =
𝑍𝑑𝑛𝑑0 𝑛𝑖0⁄ = 1 − 𝜇(1 − 𝑝) and 𝜈 = 𝜈𝑑𝑛 𝜔𝑝𝑖⁄  is the 

normalized collisional frequency. In the Eqs. (16) and 

(17), the parameter 𝐻 = 𝜔𝑝𝑖ℏ √𝑚𝑚𝑖𝐶𝑖
2⁄  is the 

normalized quantum parameter, 𝜎 = 𝑇𝐹𝑝 𝑇𝐹𝑒⁄  is the 

Fermi temperature ratio of positron-to-electron which 

related to the ratio  𝑝 by 𝜎 = 𝑝2 3⁄ . The parameters 𝛾 

and 𝛼 represent the exchange-correlation coefficients 

where 𝛾 = 5.65 (ℏ2𝑛𝑒0
2 3⁄ 2𝑚𝐸𝐹𝑒⁄ ) ≈ 0.59 and 𝛼 =

1.62 (𝑒2𝑛𝑒0
1 3⁄ 8𝜋𝜖0𝐸𝐹𝑒⁄ ). 
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3. Derivation of DCKP Equation  

To obtain the nonlinear dynamical equation for 2D 

quantum DIAWs, we use the reductive perturbation 

technique (RPT) [28] in the 2D cylindrical geometry. 

Accordingly, the normalized independent variables 

(𝑟, 𝜃, 𝑡) are stretched as 

𝜌 = 𝜖1 2⁄ (𝑟 − 𝑤0𝑡), 𝜗 = 𝜖−1 2⁄ 𝜃,

𝜏 = 𝜖3 2⁄ 𝑡, (18) 

where 𝜖 is a smallness parameter measuring strength 

of nonlinearity and 𝑤0 denotes the normalized phase 

velocity of quantum DIAWs (to be determined later 

on). The normalized dependent variables (𝑁𝑠, 𝑁𝑗, 𝑉𝐽𝑟, 

𝜙) can be expanded in a power series of 𝜖 as 

(

𝑁𝑠
𝑁𝑗
𝑉𝐽𝑟
𝜙

) = (

1
1
0
0

) + 𝜖

(

  
 

𝑁𝑠
(1)

𝑁𝑗
(1)

𝑉𝐽𝑟
(1)

𝜙(1))

  
 
+ 𝜖2

(

  
 

𝑁𝑠
(2)

𝑁𝑗
(1)

𝑉𝐽𝑟
(2)

𝜙(2))

  
 

+⋯. 

(19) 

For 𝑉𝐽𝜃 and 𝜈 we have taken: 

𝑉𝐽𝜃 = 𝜖
3 2⁄ 𝑉𝐽𝜃

(1) + 𝜖5 2⁄ 𝑉𝐽𝜃
(2) +⋯ ,

𝜈 = 𝜖3 2⁄ 𝜈0. (20) 

Substituting Eqs. (18)-(20) into Eqs. (9)-(17), and 

collecting the terms of same powers of 𝜖. For lowest 

order of 𝜖, the following relations are obtained 

𝑁𝑑
(1) = −

𝜇𝑑

𝑤0
2𝜙

(1), 𝑉𝑑𝑟
(1) = −

𝜇𝑑
𝑤0
𝜙(1), (21) 

𝑁𝑖
(1) =

1

𝑤0
2𝜙

(1),           𝑉𝑖𝑟
(1) =

1

𝑤0
𝜙(1), (22) 

𝑁𝑒
(1) =

6

3 − 2𝛼𝑒
𝜙(1),    𝑁𝑝

(1)

= −
6

3𝜎 − 2𝛼𝑝
𝜙(1), 

(23) 

where 𝛼𝑒 = 𝛼 − 2𝛾, and 𝛼𝑝 = 𝑝
1 3⁄ (𝛼 − 2𝑝1 3⁄ 𝛾). 

The lowest order terms of 𝜃-component of momentum 

equations of dust grains and ions are given by 

𝜕𝑉𝑑𝜃
(1)

𝜕𝜌
= −

𝜇𝑑

𝑤0
2𝜏

𝜕𝜙(1)

𝜕𝜗
, (24) 

𝜕𝑉𝑖𝜃
(1)

𝜕𝜌
=

1

𝑤0
2𝜏

𝜕𝜙(1)

𝜕𝜗
, (25) 

and the lowest order Poisson's equation yields: 

𝛽𝑑𝑁𝑑
(1) + 𝜇𝑁𝑒

(1) − 𝜇𝑝𝑁𝑝
(1) − 𝑁𝑖

(1) = 0. (26) 

Equation (26) together with Eqs. (21)-(23), give us the 

normalized phase velocity of quantum DIAWs as 

𝑤0 = √
(𝛽𝑑𝜇𝑑 + 1)

6𝜇
(

1

3 − 2𝛼𝑒

+
𝑝

3𝜎 − 2𝛼𝑝
)

−1 2⁄

, 

(27) 

Clearly, the 𝑤0 is modified by the quantum statistical 

and exchange-correlation effects (via the 

dimensionless parameters 𝑝, 𝜎 , 𝛼𝑝 and  𝛼𝑒).   

The next-order in 𝜖 gives the following set of 

coupled equations 

𝜕𝑁𝑑
(1)

𝜕𝜏
− 𝑤0

𝜕𝑁𝑑
(2)

𝜕𝜌
+
𝜕𝑉𝑑𝑟

(2)

𝜕𝜌
+
𝜕𝑁𝑑𝑟

(1)𝑉𝑑𝑟
(1)

𝜕𝜌

+
𝑉𝑑𝑟
(1)

𝑤0𝜏
+
1

𝑤0𝜏

𝜕𝑉𝑑𝜃
(1)

𝜕𝜗
= 0, (28) 

𝜕𝑉𝑑𝑟
(1)

𝜕𝜏
− 𝑤0

𝜕𝑉𝑑𝑟
(2)

𝜕𝜌
+ 𝑉𝑑𝑟

(1) 𝜕𝑉𝑑𝑟
(1)

𝜕𝜌
− 𝜇𝑑

𝜕𝜙(2)

𝜕𝜌

+ 𝜈0𝑉𝑑𝑟
(1)
= 0, (29) 

𝜕𝑁𝑖
(1)

𝜕𝜏
− 𝑤0

𝜕𝑁𝑖
(2)

𝜕𝜌
+
𝜕𝑉𝑖𝑟

(2)

𝜕𝜌
+
𝜕𝑁𝑖𝑟

(1)𝑉𝑖𝑟
(1)

𝜕𝜌

+
𝑉𝑖𝑟
(1)

𝑤0𝜏
+
1

𝑤0𝜏

𝜕𝑉𝑖𝜃
(1)

𝜕𝜗
= 0, (30) 

𝜕𝑉𝑖𝑟
(1)

𝜕𝜏
− 𝑤0

𝜕𝑉𝑖𝑟
(2)

𝜕𝜌
+ 𝑉𝑖𝑟

(1) 𝜕𝑉𝑖𝑟
(1)

𝜕𝜌
+
𝜕𝜙(2)

𝜕𝜌
= 0, 

(31) 

𝜕3𝜙(1)

𝜕𝜌3
= 𝜇

𝜕𝑁𝑒
(2)

𝜕𝜌
− 𝜇𝑝

𝜕𝑁𝑝
(2)

𝜕𝜌
+ 𝛽𝑑

𝜕𝑁𝑑
(2)

𝜕𝜌

−
𝜕𝑁𝑖

(2)

𝜕𝜌
, (32) 

and 

𝑁𝑒
(2) =

6

3 − 2𝛼𝑒
𝜙(2) −

12(𝛼 − 𝛾)

(3 − 2𝛼𝑒)
3 [𝜙

(1)]
2

+
9𝐻2

(3 − 2𝛼𝑒)
2

𝜕2𝜙(1)

𝜕𝜌2
, (33) 

𝑁𝑝
(2)

= −
6

3𝜎 − 2𝛼𝑝
𝜙(2)

−
12𝑝1 3⁄ (𝛼 − 𝑝1 3⁄ 𝛾)

(3𝜎 − 2𝛼𝑝)
3 [𝜙(1)]

2

−
9𝐻2

(3𝜎 − 2𝛼𝑝)
2

𝜕2𝜙(1)

𝜕𝜌2
, 

(34) 

Substituting Eq. (21) into Eqs. (28) and (29) and 

eliminating the term of second-order perturbed i.e. 

𝜕𝑉𝑑𝑟
(2) 𝜕𝜌⁄ , one can obtain the following equation 
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𝜕𝑁𝑑

(2)

𝜕𝜌
= −

2𝜇𝑑

𝑤0
3

𝜕𝜙(1)

𝜕𝜏
+ 3

𝜇𝑑
2

𝑤0
4𝜙

(1)
𝜕𝜙(1)

𝜕𝜌

−
𝜇𝑑

𝑤0
3𝜏
𝜙(1) −

𝜈0𝜇𝑑

𝑤0
3 𝜙

(1)

−
𝜇𝑑

𝑤0
2

𝜕𝜙(2)

𝜕𝜌
+

1

𝑤0
2𝜏

𝜕𝑉𝑑𝜃
(1)

𝜕𝜗
, (35) 

Likewise, Eqs. (22), (30) and (31) give 

𝜕𝑁𝑖
(2)

𝜕𝜌
=
2

𝑤0
3

𝜕𝜙(1)

𝜕𝜏
+
3

𝑤0
4𝜙

(1)
𝜕𝜙(1)

𝜕𝜌
+
𝜙(1)

𝑤0
3𝜏

+
1

𝑤0
2

𝜕𝜙(2)

𝜕𝜌
+

1

𝑤0
2𝜏

𝜕𝑉𝑖𝜃
(1)

𝜕𝜗
, (36) 

Inserting Eqs. (33)-(36) into Eq. (32) and solving with 

aid of Eqs. (24) and (25), the following equation is 

obtained  

𝜕

𝜕𝜌
(
𝜕𝜙(1)

𝜕𝜏
+ 𝐴𝜙(1)

𝜕𝜙(1)

𝜕𝜌
+ 𝐵

𝜕3𝜑(1)

𝜕𝜌3
+ 𝐶𝜑(1)

+
𝜙(1)

2𝜏
) +

1

2𝑤0𝜏2
𝜕2𝜙(1)

𝜕𝜗2

= 0.                       (37) 

Equation (37) is the DCKP equation, in which 𝐴 is the 

nonlinear coefficient, 𝐵 is the dispersive coefficient 

and C represents the coefficient of dissipation. The 

coefficients 𝐴, 𝐵 and 𝐶 are respectively given by 

𝐴 =
3(1 − 𝛽𝑑𝜇𝑑

2)

2𝑤0(𝛽𝑑𝜇𝑑 + 1)
+ 

           
24𝜇𝑤0

3

(𝛽𝑑𝜇𝑑 + 1)
[
(𝛼 − 𝛾)

(3 − 2𝛼𝑒)
3
−
𝑝4 3⁄ (𝛼 − 𝑝1 3⁄ 𝛾 )

(3𝜎 − 2𝛼𝑝)
3 ], (38) 

𝐵 =
𝑤0
3

2(𝛽𝑑𝜇𝑑 + 1)
[1 −

9𝜇𝐻2

(3 − 2𝛼𝑒)
2
−

9𝜇𝐻2𝑝

(3𝜎 − 2𝛼𝑝)
2], (39) 

𝐶 =
𝜈0
2

𝛽𝑑𝜇𝑑
𝛽𝑑𝜇𝑑 + 1

. (40) 

As it is clear from (38), (39) and (40) that both the 

nonlinear and dispersion coefficients are modified by 

the exchange-correlation effects, while the damping 

coefficient (𝐶) depends on the normalized collisional 

frequency 𝜈0, dust concentration 𝛽𝑑, and mass ratio 

𝜇𝑑. The effect of quantum diffraction appears only in 

the dispersion coefficient (𝐵) through the quantum 

parameter 𝐻.  

4. Solitary Wave Solutions of DCKP Equation  

To get the solitary wave solution of Eq. (37), 

we introduce the following transformation [26]   

𝜉 = 𝜌 −
1

2
𝑤0𝜗

2𝜏,    𝜏̅ = 𝜏. (41) 

Thus,  

𝜙(1)(𝜌, 𝜗, 𝜏) = 𝜙(1)(𝜉, 𝜏̅). (42) 

Accordingly, 

𝜕

𝜕𝜌
=
𝜕

𝜕𝜉
,

𝜕3

𝜕𝜌3
=
𝜕3

𝜕𝜉3
, 

𝜕

𝜕𝜏
=
𝜕

𝜕�̅�
−
1

2
𝑤0𝜗

2
𝜕

𝜕𝜉
, 

𝜕2

𝜕𝜗2
= 𝑤0

2𝜗2𝜏2
𝜕2

𝜕𝜉2
−𝑤0𝜏

𝜕

𝜕𝜉
. (43) 

Substituting (42) and (43) into Eq. (37), we obtain the 

following equation 

𝛽𝑑𝑁𝑑
(1) + 𝜇𝑁𝑒

(1) − 𝜇𝑝𝑁𝑝
(1) −𝑁𝑖

(1) = 0. (44) 

which represents the Damped Korteweg-deVries 

(DKdV) equation in the 𝜉, �̅� space. Obviously, when 

the collision effect is neglected, the damping term 

𝐶𝜙(1) can be removed and then Eq. (44) reduces to the 

well-known Korteweg-deVries (KdV) equation 

𝜕𝜙(1)

𝜕�̅�
+ 𝐴𝜙(1)

𝜕𝜙(1)

𝜕𝜉
+ 𝐵

𝜕3𝜙(1)

𝜕𝜉3
= 0, (45) 

which has the solitary wave solution [26] 

𝜙(1) = 𝜙0 sech
2 (
𝜉 − 𝑢0𝜏

𝐿0
), (46) 

where 𝜙0 = 3𝑢0 𝐴⁄ , 𝐿0 = √4𝐵 𝑢0⁄   and 𝑢0 are the 

initial amplitude, width and velocity of the solitary 

wave in the absence of collisions, respectively. 

For the KdV equation (45), the quantity 

𝐼 = ∫ [𝜙(1)]
2

+∞

−∞

𝑑𝜉, (47) 

is conserved quantity. 

Now, due to the presence of damping term 𝐶𝜙(1), the 

solution of Eq. (44) is assumed to be exists in the form 

of solitary wave structures whose amplitude, width and 

velocity have a slowly dependency on time τ. Thus, the 

solitary wave solution of Eq. (44) can be approximated 

as [25] 

𝜙(1) = 𝜙𝑚(𝜏) sech
2 (
𝜉 − 𝑢(𝜏)𝜏

𝐿(𝜏)
), (48) 

where 𝜙𝑚(𝜏) = 3𝑢(𝜏) 𝐴⁄ , and 𝐿(𝜏) = √4𝐵 𝑢(𝜏)⁄  

represent the amplitude and width of the dissipative 

solitary wave as functions of time 𝜏, respectively, and  

𝑢(𝜏) its velocity. Now, differentiating (47) with 

respect to 𝜏 and using the Eq. (44) we fund the 

momentum conservation law as 

𝑑𝐼

𝑑𝜏
+ 2𝐶𝐼 = 0. (49) 
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Substituting Eq. (48) into (47) we get 𝐼 =

24√𝐵𝑢(𝜏)3 2⁄ 𝐴2⁄ .  Using this into Eq. (49) and 

solving, we obtain an expression for 𝑢(𝜏) as 

𝑢(𝜏) = 𝑢0 exp (−
4𝐶

3
𝜏). (50) 

Therefore, the time dependent expressions for 

amplitude and width of the dissipative solitary wave 

are given by 𝜙𝑚 = 𝜙0 exp (−
4𝐶

3
𝜏) and 𝐿 =

𝐿0 exp (
2𝐶

3
𝜏), respectively. Since the damping 

parameter 𝐶 is positive [see Eq. (40)], damping term in 

Eq. (44) leads to a solitary wave collapsing with time. 

5. Results and Discussion 

The nonlinear properties of quantum DIAWs in a 

dense quantum DP system consisting of negatively 

charged dust grains, positive ions and dense quantum 

electrons and positrons are investigated, including the 

effects of electron/positron exchange-correlation 

potential and dust–neutral collisions. Using 2D 

cylindrical quantum hydrodynamic model, the 

nonlinear DCKP equation is derived using RPT. 

According to the dense dusty plasma characteristics, 

the physical quantities can be selected as:[26, 30] 

𝑛𝑒0 = 0.5 × 10
30 𝑚−3, 𝑛𝑖0 = 1.5 × 10

30 𝑚−3, 𝑍𝑑 =
104, 𝑛𝑑0 = 1.4 × 10

25𝑚−3, 𝑛𝑝0 = 0.4 × 10
30𝑚−3. 

Figure 1 shows the dependent of phase velocity (𝑤0) 

quantum DIAWs on the equilibrium positron density 

[via the parameter 𝑝(= 𝑛𝑝0 𝑛𝑒0⁄ )] with fixed 

equilibrium electron density 𝑛𝑒0 = 0.5 × 10
30𝑚−3. 

Dashed curve is plotted with exchange-correlation 

effects, while the solid curve without exchange-

correlation effects.  

 

Figure 1: The variation of phase velocity 𝑤0 against positrons 

density  𝑝, without (𝛾 = 𝛼 = 0) and with (𝛾 = 0.59, 𝛼 = 0.4) 

exchange-correlation potential, along with 𝑛𝑒0 = 0.5 × 10
30𝑚−3, 

𝜇𝑑 = 0.1, and 𝜇 = 0.6. 

 

From this figure one can see that the phase velocity 

𝑤0 decreases with increasing 𝑝 in the presence or 

absence of exchange-correlation effects. The presence 

of exchange-correlation in the system leads to a wave 

with a greater phase velocity (see dashed curve). 

Figures 2 and 3 illustrate the changes in the 

amplitudes 𝜙𝑚and widths 𝐿 of quantum dust ion 

acoustic (DIA) solitary waves due to the difference of  

𝑝 and 𝜇(= 𝑛𝑒0 𝑛𝑖0⁄ ) with fixed 𝑛𝑒0 = 0.5 ×
1030 𝑚−3, respectively. Figure 2 indicates that the 

solitary wave amplitude 𝜙𝑚 decreases with both 𝑝 and 

𝜇. For given values of the parameter 𝜇, the amplitude 

𝜙𝑚decreases steeply with 𝑝 for 𝑝 < 0.3 and changes 

smoothly with 𝑝 for  0.3 < 𝑝 ≤ 0.8.  For given values 

of 𝑝, the amplitude 𝜙𝑚decreases with 𝜇, which means 

that the DIA solitary wave amplitude 𝜙𝑚 increases 

with the larger values of the equilibrium ion density 

𝑛𝑖0 (via the parameter 𝜇 ). On the other side, Fig. 3 

indicates that for small values of 𝑝 < 0.5, the solitary 

wave width 𝐿 increases with 𝑝, and for greater values 

of 𝑝 ≥ 0.5, 𝐿 decreases very smoothly with 𝑝. It is 

clear from Fig. 3 that, for given values of the parameter 

𝑝, the width  𝐿 decreases with 𝜇. This means that, for 

larger values of ion density 𝑛𝑖0, the solitary wave 

width becomes larger. 

 

Figure 2: The variation of solitary wave amplitude 𝜙𝑚(𝜏)     
against positrons concentration  𝑝 for different values of 𝜇, along 

with 𝑛𝑒0 = 0.5 × 10
30𝑚−3, 𝜏 = 1, 𝜇𝑑 = 0.1, 𝐻 = 0.9, 𝜈0 = 0.1, 

𝛼 = 0.402, 𝛾 = 0.59 and 𝑢0 = 0.1 
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Figure 3. The variation of solitary wave width 𝐿(𝜏) against 

positrons concentration 𝑝 for different values of 𝜇. Other 

parameters same in Fig. 2.  

In order to examine the effects of quantum 

diffraction and exchange-correlation on the dispersion 

properties of quantum DIA solitary waves, we plotted 

the width of the solitary wave versus quantum 

parameter 𝐻, for two cases, namely, in the presence 

and absence of an exchange-correlation effect as 

shown in the Fig. 4. It is clear from this figure that, in 

the both cases, the width of solitary wave is reduced by 

increasing the quantum parameter 𝐻. The presence of 

the exchange-correlation effects (via the parameters 

𝛾 = 0.59 and 𝛼 = 0.402) leads to a solitary wave 

accompanied by a broader width.  

 

Figure 4: The variation of solitary width 𝐿(𝜏) against quantum 

parameter 𝐻, with and without exchange-correlation effect, along 

with 𝑝 = 0.6, 𝜇 = 0.3, 𝑛𝑒0 = 0.5 × 10
30 𝑚−3, 𝜏 = 1, 𝜇𝑑 = 0.1. 

 

Furthermore, Figure 5 indicates that the inclusion of 

the exchange-correlation effects in the system not only 

increases the solitary wave width but also leads to an 

increase in its amplitude. 

 

Figure 5: The effect of exchange-correlation on the solitary wave 

profile 𝜙(1), along with 𝑝 = 0.6, 𝜇 = 0.3, 𝜈0 = 0.1, 𝜏 = 1,𝑛𝑒0 =
0.5 × 1030 𝑚−3, 𝜇𝑑 = 0.1 and 𝑢0 = 0.1 

 

Figure 6 shows the time change of quantum solitary 

wave in the absence [Fig.5(a)] and presence [Fig. 

5(b)] of dust-neutral collisions (via parameter 𝜈0).  

 

 
Figure 6: The profiles of the quantum DIASWs 𝜙(1)(𝜉, 𝜏) against 

𝜉, for different time. (a) is plotted in the absence of the collision 

(𝜈0 = 0) and (b) is plotted in the presence (𝜈0 = 0.3) of collision, 

along with 𝛼 = 0.402, 𝛾 = 0.59 and 𝑢0 = 0.5. Other parameters 

same in Fig. 5.  
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In the absence of collisions (via 𝜈0 = 0), Fig. 5(a) 

shows that as the time goes on (by increasing 𝜏 ), the 

solitary wave travels forward in the 𝜉-direction 

without changing in its amplitude, width and velocity. 

On the other hand, in the presence of collision (via 

𝜈0 = 0.3), Fig. 5(b) indicates that the solitary wave 

amplitude decreases with time τ, accompanied by a 

reduced speed and an enlarged width. It is clear that 

the reason for the dissipative nature of the solitary 

wave is that its amplitude, width and velocity are all 

dependent on time. Such a solitary wave can travel a 

finite distance before collapsing at τ → ∞. 

Now, to discuss the cylindrical geometry effect on 

the quantum DIA solitary waves, transforming the 

coordinates (𝜌, 𝜗, 𝜏) back to the cylindrical 

coordinates (𝑟, 𝜃, 𝑡). Using Eqs. (41) and (42), the 

approximated solution (48) takes the form 

𝜙(1)(𝜌, 𝜗, 𝜏) = 𝜙𝑚(𝜏) sech
2 {

1

𝐿(𝜏)
[𝜌

− (𝑢(𝜏) +
1

2
𝑤0𝜗

2) 𝜏]}, (51) 

 

Figure 7: The time evolution of solitary wave pulses in the space 

𝑟, 𝜃 with 𝑝 = 0.6, 𝜇 = 0.3. 𝑛𝑒0 = 0.5 × 10
30 𝑚−3, 𝛼 = 0.402, 

𝛾 = 0.59, 𝜇𝑑 = 0.1, 𝜈0 = 0.1, 𝜖 = 0.1 and 𝑢0 = 0.1.  

 

where 𝜌, 𝜗 and 𝜏 are given by the stretch (18). Figure 

7 displays the quantum DIA solitary wave as a function 

of radial (𝑟) and angle (𝜃) coordinates for different 

times. It is noted that the propagation of solitary wave 

is shifted towards the radial direction with time going 

on. In fact, this behavior is due to the cylindrical 

geometry effects associated with transverse 

perturbation (via the 𝜃-direction). 

 
 
Figure 8: The time evolution of nebulon pulses corresponding to 

the Cartesian coordinates (𝑥, 𝑦, 𝑡), along with 𝑝 = 0.6, 𝜇 = 0.3, 

𝑛𝑒0 = 0.5 × 10
30 𝑚−3, 𝛼 = 0.402, 𝛾 = 0.59, 𝜇𝑑 = 0.1, 𝜈0 =

0.1, 𝜖 = 0.1 and 𝑢0 = 0.1.  

 

 

Because the Cartesian coordinates are the reference 

frame that generally considered in experiments, we 

have plotted the Figs. 8 and 9 using Eq. (51), by 

transforming the coordinates (𝜌, 𝜗, 𝜏) to the cylindrical 

coordinates (𝑟, 𝜃, 𝑡), and then correspondingly to the 

Cartesian coordinates (𝑥, 𝑦, 𝑡). Figure 8 exhibits the 

time evolution of nonlinear structures of quantum 

DIAWs in the space (𝑥, 𝑦) for different times. It is 

noted from Fig. 8 that there is a new type of solitonic 

structures of quantum DIAWs may be formed (which 

is called nebulon) due to the Cartesian geometry and 

transverse perturbation. It is clear from this figure that 

the size of nebulon enlarges with time.  

Figure 9 shows the contour plots of nebulon structures 

in the absence of exchange-correlation effects (i.e., 

when 𝛼 = 𝛾 = 0) Fig. 9(a), and in the presence of 

exchange-correlation effects (i.e., when 𝛼 = 0.402 

and  𝛾 = 0.59) Fig. 9(b).  

It can be seen from Fig. 9(b) that the nebulon structure 

becomes larger when the quantum exchange-

correlation effects are considered in the system, but 

when the exchange-correlation potential effects are 

neglected (via 𝛼 = 𝛾 = 0), the nebulon structure 

becomes thinner as indicated in the Fig. 9(a). 
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Figure 9: The contour plots of nebulon pulses. (a) without 

exchange-correlation effect (via 𝛼 = 𝛾 = 0) and (b) with 

exchange-correlation effect (via 𝛼 = 0.402 and  𝛾 = 0.59), 

along with 𝑝 = 0.6, 𝜇 = 0.3. 𝑛𝑒0 = 0.5 × 10
30 𝑚−3, 𝜇𝑑 =

0.1, 𝜈0 = 0.1, 𝑡 = 30, 𝜖 = 0.1 and 𝑢0 = 0.1. 

 

 

6.  Conclusions  

Based on the 2D cylindrical geometry, the 

nonlinear properties of quantum DIAWs are studied in 

a quantum dusty plasma composed of a degenerate 

electrons and positrons, ions and negatively charged 

dust grains. Both negatively charged dust grains and 

ions are assumed to be classical and inertial while the 

electrons and positrons are assumed to be quantum 

and inertialess. Only dust-neutral collisions are 

considered which are found to provide dissipation. 

Using the reductive perturbation method, the DCKP 

equation is derived. The time dependent approximate 

solution of the DCKP equation is obtained as well. 

The effects of the quantum plasma parameters on the 

electrostatic quantum DIA solitary waves are 

examined. It is found that the quantum DIA solitary 

waves are significantly modified by the equilibrium 

positron concentration 𝑝, the quantum diffraction 

parameter 𝐻, and the exchange-correlation param-

eters. The geometrical effects on the profiles of 

quantum DIAWs have been investigated as well. It is 

found that the propagation of the solitary waves in a 

cylindrical geometry with weak transverse pertu-

rbations differs from that of a quasi-one-dimensional 

solitary wave. Further, it was found that the nebulon 

structures can exist associated with cylindrical 

quantum DIAWs and the main factors in their 

formation are Cartesian geometry and transverse 

perturbation. In addition, it was shown that, the 

quantum exchange-correlation parameters have 

noticeable effects on nebulon structures. Finally, the 

present investigations may be helpful in understa-

nding the basic features of quantum DIAWs in dense 

astrophysical objects. 
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