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ABSTRACT

Predicting customer churn in retail banking is essential for sustaining profitability. This study compares four su-
pervised machine-learning models—Logistic Regression (LR), Support Vector Machine (SVM), Random Forest
(RF), and Artificial Neural Network (ANN)—using the publicly available bank customer churn dataset from Kag-
gle (10,000 records, 18 attributes; publicly available at Kaggle repository. Data preprocessing included one-hot
encoding for categorical variables, label encoding for gender, and feature selection via an ExtraTreesClassifier
retaining nine informative predictors (e.g., age, credit score, balance). To address class imbalance (~=80% non-
churners vs. 20% churners), models were trained and evaluated with and without the Synthetic Minority Over-
sampling Technique (SMOTE), which was applied only to the training folds under stratified 5-fold cross-validation.
Evaluation metrics comprised accuracy, precision, recall (for churn class), F1-score, ROC-AUC, and PR-AUC.
RF achieved the best balance between recall (0.484 imbalanced; 0.619 balanced) and accuracy (0.867 imbal-
anced), while LR with SMOTE attained the highest recall (0.715) at the cost of reduced accuracy (0.718). Overall,
the results highlight RF as the most robust model across both distributions and emphasize the importance of
imbalance-aware evaluation in bank churn prediction.
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1. INTRODUCTION

(non-churners) and a much smaller minority leave
(churners). This imbalance complicates learning: naive

N . . I hi high impl icti
Customer churn—customers terminating their relation- models can achieve high accuracy by simply predicting

ship with a bank—directly erodes revenue and market
share in an increasingly competitive retail-banking
environment. Even modest reductions in churn rates
can translate into substantial gains, because the cost
of acquiring new customers is typically much higher
than the cost of retaining existing ones. As banks
move toward digital channels and self-service platforms,
traditional rule-based retention strategies become
less effective, making data-driven churn prediction
an essential component of customer relationship
management [1].

From a modelling perspective, bank churn prediction
is a binary classification problem with a strong class
imbalance, where the majority of customers stay

the majority class while still failing to identify at-risk
customers. Recently, machine learning (ML) and
sampling techniques have been utilized to improve churn
prediction using algorithms such as logistic regression,
decision trees, random forests, gradient boosting, neural
networks, and more recent deep or graph-based models

2].

In the banking domain, a growing body of research has
applied ML to real customer data. For example, [2]
compared several classical classifiers for bank churn
and showed that ensemble methods outperformed single
models in terms of accuracy and F-score. However, [2]
and [3] study churn in a commercial bank in Ethiopia,
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highlighting the importance of handling imbalances for
reliable predictions in emerging markets. Moreover,
[4] evaluated ten ML models with multiple resampling
techniques on U.S. community bank data and found
that RF, XGBoost, AdaBoost, and bagging classifiers
dominated in terms of accuracy, F-score, and ROC-AUC.
The contributions of the study [5] explore SMOTE-based
balancing on bank churn datasets, demonstrating that
oversampling helps minority-class recall, but may not
consistently improve AUC or precision. A recent study [6]
investigated deep learning and temporal or graph-based
architectures that incorporate behavioral sequences, yet
often at the cost of reduced interpretability and higher
data requirements [7].

Despite these advances, there are several gaps in
the literature on bank customer churn. First, many
studies have evaluated models primarily using overall
accuracy, which can be misleading under severe class
imbalance; metrics such as ROC-AUC, precision—recall
AUC (PR-AUC), and recall for the churn class are not
always reported [8]. Second, the experimental design
is sometimes under-specified: the order of training/test
splitting versus resampling, the use (or not) of stratified
folds, and safeguards against data leakage are not
always made explicit, making it difficult to reproduce
or compare results. Third, even in studies that use
the widely adopted Kaggle “Bank Customer Churn”
dataset, reported performances vary widely, from
moderate to near-perfect accuracy, without a consistent
imbalance-aware evaluation framework [9]. Furthermore,
some studies provide a multimetric analysis that exposes
the trade-off between catching as many churners as
possible (high recall) and limiting the number of falsely
targeted non-churners (low FPR), which is crucial for
designing cost-effective retention campaigns.

To address these gaps, this study develops a transparent
and reproducible evaluation framework for bank
customer churn prediction using a public retail bank
dataset from Kaggle containing 10,000 customers
and 18 attributes, including demographic, financial,
and behavioral features, such as complaint history,
satisfaction score, card type, and loyalty points [9]. After
one-hot and label encoding, min—max normalization, and
feature importance ranking with the ExtraTreesClassifier,
we retained the nine most predictive features for
modelling. We then compared four widely used
supervised ML models (LR, SVM, ANN, and RF) against
two experimental scenarios: (i) the original imbalanced
data (~80% retainers vs. 20% churners), and (ii) a
balanced version created by applying SMOTE only to the
training data. A stratified 70/30 train—test split and 5-fold
stratified cross-validation with fixed random seeds were
used to ensure robustness and comparability across the
models. The contributions of this study are threefold.

1. Rigorous imbalance-aware learning pipeline. This
study establishes a transparent and reproducible
machine learning framework for bank churn prediction by
strictly separating data splitting, feature engineering, and
resampling. SMOTE is applied only within the training
folds to prevent data leakage, enabling a fair comparison
between imbalanced and balanced learning scenarios.

2. Comprehensive multimetric and statistical perfor-
mance evaluations. Four widely used supervised
algorithms (LR, SVM, ANN, and RF) were evaluated
using a rich suite of metrics: accuracy, precision, recall,
F1-score, ROC-AUC, PR-AUC, balanced accuracy, and
MCC, along with formal significance testing (DeLong
and McNemar tests). This yields a more reliable
performance interpretation than the accuracy-centric
evaluations commonly observed in prior work.

3. Practical decision insights for banking churn
management. The results highlight scenarios in which
each model excels: RF provides the most stable
overall performance, SVM minimizes false positives for
cost-sensitive retention programs, and LR with SMOTE
maximizes churn detection when recall is prioritized.
These findings offer actionable guidance for banks
to choose churn prediction strategies aligned with
operational goals and cost considerations.

The subsequent sections of this study are organized as
follows. A comprehensive review of the current state of
the art is presented in Section (2). The study method-
ology is presented in Section (3). Section (4) presents
comparative results of the selected algorithms. Section
(5) concludes the study.

2. LITERATURE REVIEW

Customer churn in the banking sector has attracted
increasing attention in recent years, especially as
institutions face highly competitive markets and
imbalanced churn data. A growing body of empirical
work has explored which machine-learning algorithms
perform best for bank churn prediction, how to handle
class imbalance, and how to interpret the resulting
models. Most recent studies have converged on three
themes: the superiority of tree-based ensembles and
advanced models over simple baselines, the importance
of explicit imbalance-handling strategies such as
SMOTE, and an increasing interest in explainable and
deep learning—based approaches.

The work reported in [10] focused on machine learning
and interpretability for bank credit products. It developed
a churn prediction framework for bank credit card
customers that balances data using oversampling
techniqgues and compares several algorithms, ultimately
selecting an Extreme Gradient Boosting (XGBoost)
model as the core classifier. Their best model achieved
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very high predictive performance (accuracy and AUC
close to 0.97) and was interpreted using SHAP values
to identify key drivers of churn, such as credit limit,
transaction patterns, and repayment behavior. This
study demonstrates that combining powerful ensemble
methods with interpretability tools can provide banks with
accurate churn predictions and actionable explanations
about why customers are leaving.

One of the most comprehensive studies that compared
multiple algorithms and resampling strategies on bank
churn data was [11]. Their study analyzed a banking
churn dataset using a wide portfolio of models—Naive
Bayes, LR, SVM, Decision Tree (DT), RF, Gradient
Boosting (GB), XGBoost, and LightGBM—together
with several techniques for handling data imbalance.
They showed that the hybrid SMOTE-ENN resam-
pling method is the most effective for improving
minority-class performance and that LightGBM achieves
the best overall results with an accuracy of approxi-
mately 0.979 and correspondingly strong ROC-AUC [11].

Peng et al. [12] used a Kaggle bank churn dataset and
constructed a GA-XGBoost model combined with multi-
ple oversampling schemes, reporting substantial gains
in both the AUC and recall for churners after resampling
and feature selection. More broadly, Tam compared
several data-level (oversampling, undersampling, hybrid)
and algorithm-level approaches for handling imbalances
in churn prediction tasks from banking and e-commerce,
finding that oversampling methods generally work best
on small- and medium-sized datasets and that ensemble
models outperform single classifiers, especially when
feature selection is guided by SHAP and mRMR [13].
These studies underline that class-imbalance handling
is not optional but a central design choice in bank churn
modelling.

Another stream of research concentrates on frameworks
for bank churn prediction, using many classifiers
on real bank data. For example, [5] proposed a
machine-learning framework for a large community
bank in the southern United States, constructing and
comparing ten classification models, including LR, k-NN,
SVM, DT, RF, Bagging, AdaBoost, GB, XGBoost, and
Extra Trees, under five different sampling strategies.
The results show that ensemble tree-based classifiers
(RF, XGBoost, AdaBoost, and Bagging) consistently
dominate other models in terms of accuracy, F-score,
and ROC-AUC on the test observations. In this manner,
[14] analyzed an extensive customer-level dataset from
a multinational bank and compared RF, LR, DT, and
elastic net models, and found that RF provides the
best balance between accuracy and discriminatory
power, while simultaneously identifying key behavioral
and relationship features associated with attrition
[14]. In addition, [15] retail-bank churn using GB, DT,

and Gaussian Naive Bayes, reporting very high and
closely clustered accuracies, with Naive Bayes slightly
edging out the other models on their particular dataset
and emphasized that even quite different learning
paradigms can perform similarly when the data are
highly informative [15]. Together, these studies reinforce
the view that ensemble and tree-based models are
particularly strong candidates for operational bank churn
systems.

More recently, deep learning has been applied to
banking churn with a focus on both performance
and data balancing. Thenmozhi et al.. proposed a
hyperparameter-tuned deep learning model for churn
prediction in the banking sector. Their pipeline consists
of data preprocessing, an Improved SMOTE (ISMOTE)
procedure to rebalance the classes, and a deep neural
network classifier whose hyperparameters are carefully
optimized; the resulting system reaches an accuracy of
around 97-98% and substantially improves minority-
class recognition compared to baseline models [7]. In
parallel, [16] introduced an explainable deep-learning-
based churn prediction model that combines neural
networks with interpretable components, providing both
high-accuracy and global/local explanations of churn
drivers [16].

At the same time, some studies have relied on classical
statistical models as baselines for bank churn. Similarly,
[17] applied binary LR to a dataset of 5,000 Indonesian
credit card customers and identified a set of significant
predictors, including number of dependents, marital
status, number of products, months inactive, and trans-
action counts, achieving an accuracy of approximately
87% on hold-out data. Their work illustrated that LR
remains a competitive and interpretable method for
churn prediction, especially when carefully specified and
supported by significance testing, although it typically
underperforms tree-based and deep models on more
complex or highly imbalanced datasets.

Beyond individual banks, several cross-domain or
methodological studies have also influenced churn
modelling in the financial sector. The imbalanced
datasets affect the accuracy of machine learning models
for churn prediction and show that severe skew towards
the majority class leads to biased models that appear
accurate but perform poorly on the minority (churn)
class. They demonstrated that combining oversampling
strategies with ensemble classifiers mitigates this
issue and yields more reliable performance [18]. Brito
et al. [19], working with a very large retail-bank
dataset, compared the impact of resampling techniques
versus hyperparameter tuning and concluded that the
best results come from integrating both, particularly
for gradient-boosting models, where PR-AUC and
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ROC-AUC improve significantly once class imbalance is
treated explicitly [19]. These more general contributions
support the trend towards multimetric evaluation and
careful experimental design in churn prediction research.

Furthermore, Tran et al. [20] examined customer
churn prediction in the banking sector using a pipeline
that combined customer segmentation with several
supervised machine-learning models. Using a pub-
licly available bank churn dataset, the authors first
applied k-means clustering to partition customers into
homogeneous groups and then trained the kNN, LR,
DT, RF, and SVM classifiers on both the full sample
and the resulting segments. The synthetic minority
oversampling technique (SMOTE) was used to alleviate
class imbalance. Their results show that RF clearly
dominates the other models, achieving an accuracy of
approximately 97% on the banking dataset, whereas
LR attains the lowest accuracy (approximately 87%).
Interestingly, they reported that customer segmentation
has only a limited impact on prediction accuracy and
that performance is driven mainly by the underlying
learning algorithm rather than the segmentation step
[20]. This study is therefore important for confirming the
strong performance of tree-based ensembles in bank
churn prediction, while also illustrating that segmentation
alone is not sufficient to solve imbalance or enhance
discrimination.

Hambali and Andrew [6] provide a focused empirical
analysis of how oversampling affects classification
performance in bank churn prediction. Working with an
imbalanced retail-bank dataset containing demographic,
account, and transaction features, they benchmark
multiple classifiers (including logistic regression,
k-nearest neighbors, random forest, and a simple neural
network) in two scenarios: using raw data and using
data rebalanced with SMOTE [6]. Their evaluation was
based on accuracy, precision, recall, and F1-score,
reported separately for the training and test sets. The
authors showed that SMOTE consistently improved
minority-class recognition and raises F1-scores across
models, with the best configuration achieving test
accuracy close to the mid-90% range [6]. However,
the analysis remains largely descriptive: performance
is compared via point estimates of standard metrics
without ROC/PR curve analysis, confidence intervals,
or formal statistical tests between models. This makes
their study a useful empirical baseline for SMOTE in the
banking context, while leaving room for more rigorous
multi-metric and inferential comparisons.

The study in [21] investigated customer churn detection
in the banking sector using random forest and LightGBM
on a Kaggle-based bank churn dataset, and proposed a
framework explicitly focused on probability calibration

and interpretability. The dataset is first preprocessed
to select the variables most directly related to banking
churn behavior, and class imbalance is addressed using
the SMOTETomek hybrid method, which combines
SMOTE oversampling with Tomek-link cleaning to
remove borderline and noisy instances. The authors
evaluated models with multiple metrics, including accu-
racy, precision, recall, and F1-score, and importantly, the
Brier score, to assess the calibration quality of predicted
probabilities [21]. They demonstrated that calibrated
random forest and LightGBM models yield more
reliable probability estimates than their uncalibrated
counterparts, improving the usefulness of churn scores
for decision-making. In addition, the study applies
SHAP to decompose model predictions into feature
contributions, revealing which customer attributes (such
as account tenure, balance, and transaction behavior)
drive churn risk and providing detailed, model-agnostic
explanations to support targeted retention strategies.

One recent work also explores more advanced hybrid
strategies for bank churn prediction that combine
resampling, ensembles, and temporal modelling. [22]
propose a framework that applies multiple oversampling
techniques, including SMOTE-Tomek, together with
several classifiers such as logistic regression, decision
tree, random forest, gradient boosting, XGBoost,
and k-nearest neighbors on a heavily imbalanced
bank-customer dataset. Their experiments showed
that hybrid resampling (SMOTE-Tomek) paired with
tree-based ensembles, particularly random forest and
gradient boosting, yielded the highest classification
performance, with accuracy and F1-scores reported
in the high-90% range and notable improvements in
minority-class recall compared with simpler baselines.
Similarly, [21], summarized in the literature review
of other banking studies, used panel-type data from
European private banks and adopted dynamic modelling
approaches that treat churn as a time-dependent
process, applying supervised algorithms such as LR,
SVM, RF, and GB to panel data to capture how evolving
transaction and loan patterns influence the future
likelihood of churn. These two studies collectively
highlight that sophisticated resampling and ensemble
strategies, sometimes in combination with longitudinal
data structures, can substantially enhance churn
detection in financial institutions.

In light of the above review, it is clear that prior research
has made important progress in applying machine
learning to bank customer churn prediction, especially
through the use of tree-based ensembles, resampling
techniques such as SMOTE, and more recently, deep
learning and interpretability tools. However, most
existing studies either focus on a single “best” model
or on a narrow family of algorithms, and often report
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results for only one type of data preparation (usually
a resampled dataset). In addition, performance is
frequently assessed with a limited set of aggregate
metrics (typically accuracy, F1-score, and ROC—-AUC),
with relatively little attention paid to confusion-matrix
behavior, precision—recall characteristics, or formal
statistical testing of performance differences between
models and between imbalance-handling strategies.

To address these gaps, the present study undertakes a
systematic and statistically grounded comparison of four
widely used supervised learning algorithms—LR, SVM,
RF, and artificial neural networks —on a real U.S. bank
churn dataset under two clearly defined training regimes:
the original imbalanced data and a SMOTE-balanced ver-
sion of the training set. All models were evaluated within
a unified pipeline using stratified train—test splitting and
cross-validation, and their performance was analyzed
through a multi-metric framework that included accuracy,
precision, recall/TPR, FPR, F1-score, balanced accuracy,
Youden’s J, MCC, ROC—-AUC (with DeLong confidence
intervals), logistic regression, PR curves, and PR—AUC.
Moreover, paired DeLong and McNemar tests were em-
ployed to determine whether the observed differences
between models and between the imbalanced and bal-
anced scenarios were statistically significant. Thus, the
study not only confirms and refines earlier findings re-
garding the strong performance of tree-based and neural
models in banking churn but also provides a transparent,
robust baseline against which more complex ensemble
or deep-learning approaches can be compared in future
work.

3. METHODOLOGY

Recent studies have adopted a similar machine-learning
experimental design combining multiple supervised algo-
rithms, feature engineering, stratified cross-validation,
and imbalance handling using SMOTE for bank churn
prediction [23—27]. These studies demonstrate that
pipeline-based workflows and balanced training regimes
significantly improve the ROC-AUC and PR-AUC
performance, particularly for tree-based and neural
network models.

This study adopts a data-driven machine-learning
pipeline to model and predict customer churn in the
retail banking sector [19]. Various recent studies, such
as [23—27] have adopted similar approaches. The main
objective was to compare the performance of four widely
used supervised learning algorithms (LR, SVM, RF, and
ANN) under two distinct training regimes: using the
original imbalanced data and using an SMOTE-balanced
version of the training data. The methodological workflow
comprises three main stages:

1. Data understanding, which describes the source
dataset and the churn label;

2. Data Preprocessing included encoding, normaliza-
tion, feature selection, imbalance handling, and stratified
data splitting.

3. Model implementation and evaluation, where the
four algorithms were embedded in reproducible scikit-
learn/imblearn pipelines, trained with Stratified K-Fold
cross-validation, and evaluated on a held-out test set
using a rich set of metrics and statistical tests.

3.1. DATA UNDERSTANDING

To investigate the churn problem in the banking domain,
we used a publicly available U.S. bank customer dataset
from Kaggle. The dataset contains 10,000 customers,
each described by 18 attributes or features capturing de-
mographics, accounts, product usage, and satisfaction-
related information, together with a binary churn label.
The original dataset is listed in Table (1).

The original target feature Exited indicates whether the
customer has left the bank (1, churn) or remains with the
bank (0, retain). The features include:

e Technical identifiers (RowNumber, Customerld,
Surname),

e Demographic variables (Geography, Gender, Age),

e Relationship characteristics (Tenure, NumOfProducts,
HasCrCard, IsActiveMember),

e Financial indicators (CreditScore, Balance, Estimat-
edSalary), and

e Behavioral/satisfaction features (complaint, satisfac-
tion score, card type, point earned) plus the excited label
(later renamed churn during preprocessing).

An initial inspection of the target distribution showed
a typical class imbalance: approximately 80% of the
customers were non-churners (class 0) and 20% were
churners (class 1), giving an imbalance ratio of approxi-
mately 4:1. This reflects the reality of churn in banking,
but it also motivates the need for explicit handling of class
imbalance in the modelling stage.

3.2. DATA PREPROCESSING

All data preparation steps and subsequent modelling
were performed in Python using the Jupyter Notebook,
relying on the pandas, numpy, scikit-learn, imblearn, mat-
plotlib, and seaborn libraries. The main pre-processing
components are described as follows. Figure(1) illus-
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Table[1]: Dataset Description

N Feature Description
1 Row Number Quantity of customers
5 Customer ID Customer identification
numbers

3 Surname The name of the customer

(the last name of him or her)
4 Credit Score Score of credit card usage
5 Geography Location of the customer
6 Gender Customer gender
7 Age Customer’s age

The duration of the account,
8 Tenure -

expressed in months

9 Balance Customer’s main balance

No of products used by the

10 NumOfProducts
customer

Does the client have a credit

Handling
Class
Feature Data
Selection ST Splitting

[Sampling
Strategy

Figure 1. Data Preprocessing Phases

e Geography and Card Type were converted into
dummy (one-hot) variables using pandas.get_dummies,
generating indicators such as Geography_France,

Geography_Germany, Geography_Spain and
Card Type DIAMOND, Card Type GOLD, Card
Type_PLATINUM, Card Type_SILVER.For example,
Table (2) displays the Geography feature after encoding

A metric that measures the
level of satisfaction or
happiness expressed by
customers

15 Satisfaction Score

Refers to the specific type of
credit or debit card issued by
the bank

16 Card Type

Point Earned refers to the
accumulation of reward points
or loyalty points associated
with a specific card or
account.

17 Point Earned

Indicates customer left the
bank (Churn) or non-churners
(Retain)

18 Exited

trates the data-preparation process used in this study.

3.2.1. Handling Missing Values

The raw dataset was inspected for missing values using
standard pandas’ functions. The U.S. bank churn dataset
used in this study does not contain missing entries in
the variables retained for modelling, so no imputation
or row deletion was required. This allows the full sam-
ple of 10,000 customers to be exploited and ensures
that the observed performance differences are driven by
modelling choices rather than by missing data handling.

3.2.2. Encoding the Categorical Features

Because scikit-learn algorithms operate on numerical
inputs, the categorical attributes are transformed as
follows:

11 HasCrCard card? card Table[2]: Encoding the Geography feature by one-hot
12 IsActiveMember Is the CUStOTerQS account Row Geography | Geography | Geography
activer Number _France | _Germany | _Spain
13 Estimated Salary The customer’s estimated
salary 1 1 0 0
Refers to instances where 2 0 0 1
customers or clients file 3 1 0 0
14 Complain complaints or express
dissatisfaction with the bank’s 4 1 0 0
products, services 5 0 0 1

e Gender was encoded using LabelEncoder, mapping
the original categories (Female, Male) to integer
codes (0, 1). Table(3) displays the gender features af-
ter LabelEncoder from raw numbers (5-10) in the dataset.

e Binary attributes (HasCrCard, IsActiveMember) were
coded as 0/1 and kept in numeric form.

Table[3]: LabelEncoder of Gender

RowNumber Gender
5 1
6 1
7 0
8 1
9 1
10 1

A working DataFrame (dforder1) was then created with
the target label in the first column, followed by the
selected continuous variables, and encoded categori-
cal/binary variables.

3.2.3. Normalizing the Data

To standardize the scale of all predictors and improve the
optimization behavior of LR, SVM, and ANN, min—max
normalization was applied using MinMaxScaler from
sklearn.preprocessing.
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The scaler was fitted on the feature matrix and used to
transform all predictors into the range [0, 1], yielding a
normalized dataset (dforder_copy2). The churn label
column was renamed from exit to churn. Tree-based
models such as RF are less sensitive to scaling, but
applying a uniform normalization simplifies the pipeline
and is beneficial for other models.

3.2.4. Feature Selection

To reduce redundancy and focus on the most informative
predictors, a feature importance-based selection
procedure was used. An ExtraTreesClassifier from
sklearn.ensemble was trained on the normalized dataset
(dforder_copy3), with all available predictors used to
predict churn.

The resulting feature importance scores were extracted
and sorted in descending order. The top nine features
were selected as the final input set for all the models.
These include age, credit score, balance, NumOfProd-
ucts, tenure, and a subset of categorical/binary indicators
such as Geography, IsActiveMember, HasCrCard, and
Gender. This selection simplifies the models and en-
sures that LR, SVM, RF, and ANN are trained on the
same compact and behaviorally meaningful feature sub-
set. Table (4) lists the feature importance ranks in the
original dataset.

Table[4]: Features Importance Rank

Features
Importance The Feature The Value
Rank
1 Age 0.178536
2 NumOfProducts 0.136619
3 Balance 0.096037
4 CreditScore 0.089945
5 Point Earned 0.088583
6 EstimatedSalary 0.087466
7 Tenure 0.078719
8 Satisfaction Score 0.064175
9 IsActiveMember 0.035108

As shown in Table (4), age had the largest importance
weight (~0.18), followed by the number of products
(~0.14) and balance (~0.10), with credit score, reward
points, and estimated salary each contributing around
0.08-0.09. Tenure and satisfaction scores also showed
meaningful contributions, while active membership, al-
though less influential than others, still added discrimi-
native power. Overall, these results indicate that churn
risk in this bank is driven by a combination of demo-
graphic (age), portfolio (number of products, card-related
rewards), and financial (credit score, balance, income)
characteristics, together with engagement indicators (sat-
isfaction and activity status), which aligns with prior find-

ings in banking churn literature.

3.2.5. Handling Class Imbalance (Sampling Strat-
egy)

As the original churn label is heavily skewed (=~ 80%
non-churn, 20% churn), this study explicitly examines
two training regimes:

1. Scenario A — Imbalanced:

Models were trained on the original imbalanced training
data. This baseline reflects the true operating conditions
of the banks.

2. Scenario B — SMOTE-balanced:

Models are trained on a synthetically balanced
training set obtained via the synthetic minority
oversampling technique (SMOTE) implemented by
imblearn.over_sampling.SMOTE.

SMOTE generates synthetic minority (churn) instances
by interpolating between each churn case and its
nearest minority neighbors until the number of churn
and non-churn observations in the training set is equal.

In Scenario B, SMOTE is strictly confined to the training
portion of the data.

e During cross-validation, SMOTE is placed inside
an imblearn pipeline and applied only to the train-
ing folds, and never to the validation fold within each split.

e For the final model, SMOTE was fit on the full training
set, and 30% of the test set remained untouched and
imbalanced.

This design avoids information leakage and allows for a
fair and controlled comparison between imbalanced and
SMOTE-balanced training for each algorithm.

3.2.6. Data Splitting

After preprocessing and feature selection, the final
dataset (dforder_copy3) was split into training and
test subsets using train_test_split with a 70/30 ratio,
stratified =y to preserve the class proportions, and
random_state=42 to ensure reproducibility.

For example, in the logistic regression experiment, the
training set contained 5,573 non-churners and 1,427
churners (total 7,000), whereas the test set contained
2,389 non-churners and 611 churners (total 3,000), main-
taining the original ~ 4:1 imbalance in both splits. The
same stratified split was used for all four algorithms and
for both scenarios so that performance differences can
be attributed solely to the model and sampling strategy
rather than to different random splits.
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3.3. MODEL IMPLEMENTATION AND EVALUA-
TION

All models were implemented in Python using the Jupyter
Notebook, with a modelling pipeline based on scikit-learn
and imblearning. A common evaluation function was
defined for each algorithm to guarantee a unified experi-
mental procedure across scenarios.

3.3.1. Model Specifications

The four supervised learning algorithms were instanti-
ated as follows:

e LR:

LogisticRegression(solver=’liblinear, random_state=42)
embedded in a pipeline with StandardScaler, and in the
balanced scenario, SMOTE:

o Imbalanced: StandardScaler — LogisticRegression

o SMOTE-balanced: StandardScaler - SMOTE —
LogisticRegression

e SVM:
SVC(kernel=rbf; C=1.0, gamma='scale, prob-
ability=True, random_state=42) combined with

StandardScaler and optional SMOTE

o Imbalanced: StandardScaler — SVC
o SMOTE-balanced: StandardScaler - SMOTE — SVC

o Artificial Neural Network (ANN/MLP):
MLPClassifier(hidden_layer_sizes=(64,32), acti-
vation=relu,  solver="adam, alpha=1e-4, learn-
ing_rate="adaptive, learning_rate_init=1e-3,
max_iter=200,

early_stopping=True,

validation_fraction=0.1,

n_iter_no_change=10,

random_state=42) within:

o Imbalanced: StandardScaler — MLPClassifier
o SMOTE-balanced: StandardScaler - SMOTE —
MLPClassifier

¢ RF:
RandomForestClassifier(n_estimators=100, n_jobs=-1,
random_state=42) used with and without SMOTE:

o Imbalanced:

RandomForestClassifier

o SMOTE-balanced: SMOTE — RandomForestClassi-
fier

For algorithms that support probability outputs, a helper
function (get_scores) was used to extract either pre-
dict_proba (for LR, SVM with probability=True, ANN, and

RF) or decision_function, providing continuous churn
scores for ROC/PR analysis.

3.3.2. Cross-validation and Scoring

For each algorithm and scenario, the performance on
the training set was assessed using Stratified K-Fold
cross-validation with 5 folds (StratifiedKFold(n_splits=5,
shuffle=True, random_state=42)). The following metrics
were computed via cross validation:

o Accuracy = (TP + TN) / (TP + TN + FP + FN)

Variable Definitions:
e TP: True Positives — correctly predicted churners

e TN: True Negatives — correctly predicted non-
churners
e FP: False Positives — non-churners incorrectly

predicted as churners
e FN: False Negatives — churners incorrectly predicted
as non-churners

e Precision (per class)

Precision_i = TP_i/ (TP_i + FP_i)
Variable Definitions:

e TP_i: True Positives for class i
e FP_i: False Positives for class i

e Precision_macro

Precision_macro = (1/K) * }_ Precision_i
Variable Definitions:

e K: Number of classes (K=2 for churn)

e Precision_i: Precision value for each class

e Recall (per class)

Recall_i = TP_i/ (TP_i + FN_i)
Variable Definitions:

e TP_i: True Positives for class i

e FN_i: False Negatives for class i

e Recall_macro,

Recall_macro = (1/K) * " Recall_i

Variable Definitions:

e K: Number of classes

e Recall_i: Recall the values for each class.

e F1-score (per class)

F1_i = 2 * (Precision_i * Recall_i) / (Precision_i +
Recall_i)

Variable Definitions:

e Precision_i: Precision of class i
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e Recall_i: Recall of class i
e F1_macro,

F1_macro = (1/K) * Y F1_i
Variable Definitions:

e K: Number of classes

e F1_i: F1-score for each class

e ROC-AUC

AUC_ROC = [ TPR(FPR) d(FPR)
Variable Definitions:

e TPR: TPR=TP /(TP + FN)

e FPR: FPR =FP/(FP + TN)

e For Logistic Regression,
(PR-AUC)

average_precision

AP =Y (Recall_n - Recall_(n-1)) * Precision_n
Variable Definitions:

e Recall_n: Recall at threshold n

e Precision_n: Precision at threshold n.

The mean values and standard deviations across folds
were reported, providing an estimate of the stability and
variability of each model under both imbalanced and
SMOTE-balanced training.

3.3.3. Final Test Evaluation and Curve Analysis

After cross-validation, each pipeline (for each algorithm
and scenario) was refitted on the full training set and
evaluated on the untouched 30% of the test set. The
main outputs were:

o Classification report (precision, recall, F1-score per
class) using classification_report.

e Confusion matrix (TP, FP, FN, TN) using confu-
sion_matrix.

e Aggregate metrics such as overall accuracy, TPR
(recall), FPR, F1-score, and standard ROC—-AUC via
roc_auc_score.

For all models, ROC curves were generated using the
roc_curve. For Logistic Regression, precision—recall
curves and PR-AUC were computed using preci-
sion_recall_curve, average_precision_score, and (are-
under the curve AUC (). The ROC and PR points were
exported in both “wide” and “long” formats for further
visualization and analysis.

3.3.4. Statistical Comparison (DeLong and McNe-
mar Tests)

To provide a statistically grounded comparison of the

imbalanced versus SMOTE-balanced regimes and

between models, this study incorporated two inferential

tools:

e A custom implementation of the DelLong method
was used to estimate the ROC-AUC, its standard
error, and 95% confidence interval, and to perform a
paired DelLong test on the same test set. This allows
for formal testing of whether the differences in AUC
between Scenario A (imbalanced) and Scenario B
(SMOTE-balanced) are statistically significant.

e McNemar’s test was applied to paired test predictions
using the counts of instances where one model (or sce-
nario) was correct and the other incorrect. This test
evaluates whether the difference in the error patterns
between the two classifiers is significant beyond random
variations.

Finally, the confusion matrix statistics, cross-validation re-
sults, DeLong outputs, and McNemar p-values for all four
algorithms and both training regimes were consolidated
into tables. These tables form the basis for the detailed
performance analysis and discussion presented in the
results section. Figure (2) summarizes the workflow of
the methodology used in this study.

4. RESULTS AND DISCUSSION
4.1. MoDELS PERFORMANCE

The performance of the four models in this study was
evaluated on a stratified 30% hold-out test set using the
original 80/20 class distribution and a decision thresh-
old of 0.5. Then, the four models were evaluated when
SMOTE oversampling was applied only to the training
data to balance the churners and non-churners, while
the test set remained imbalanced. In the following sub-
sections, the results of the four models are shown and
discussed.

4.1.1. LR:

The LR served as the baseline. On the imbalanced test
set, it achieved an accuracy of 0.815 and ROC-AUC
of 0.783, but its recall for churners was very low (TPR
= 0.218), with a modest F1-score of 0.324, despite a
reasonably high precision for churn (PPV = 0.633) and
a low false-positive rate (FPR = 0.032). Under SMOTE,
LR undergoes a marked change in behavior: churn re-
call increases dramatically from 0.218 to 0.715, and the
F1-score for churn rises to approximately 0.508, but
this comes at the cost of lower accuracy (0.718) and
a much higher FPR (0.281). For LR, Table (5) shows
Cross-Validation (5-fold) — Imbalanced vs. SMOTE, Ta-
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Table[5]: Cross-Validation (5-fold) — Imbalanced vs SMOTE

. Precision Recall F1
Scenario Accuracy (macro) (macro) (macro) ROC-AUC
Imbalanced 0.8070 0.7007 0.5796 0.5901 0.7550
Balanced 0.7039 0.6347 0.6928 0.6370 0.7572
Table[6]: Holdout (30%) — Confusion Matrices and Derived Metrics at Threshold 0.5
Soenano T FP ™ FN A"'c‘;'l‘l’;‘;; R"g’é‘_’:ﬂ‘c TPR (Recall) FPR
Imbalanced 133 77 2312 478 0.8150 0.783040 0.2177 0.0322
Balanced 437 671 1718 174 0.7183 0.787684 0.7152 0.2809
Table[7]: Derived Metrics at 0.5 (Accuracy, PPV, TPR, TNR, FPR, NPV, F1, Balanced Accuracy, MCC, Youden’s J)
Scenario PPV TPR TNR FPR NPV F1 B“':::ed Mcc YoudenJ Auc Accuracy
Imbalanced 0.6333 0.218 0.968 0.032 0.829 0.324 0.593 0.293 0.185 0.783 0.815
Balanced 0.3944 0.715 0.719 0.281 0.908 0.508 0.717 0.362 0.434 0.788 0.718

r Dataset Description
@ Kaggle Bank Customer Churn
10k, 18 features, binary target
L Class ratio; 80 %/20%
L
® r‘ Data Preprocessing
one-hot, label encoding gender
' min-max scaling [0;1]
I rename target
( Feature Selection SMOTE
::.2 ExtraTreesClassifier - applied only
=g= top 9 features to training foids
_= Age, NumOfProducts P
Balance, CreditScore ® aligatonAest

Points, Salary, Tenure
Satisfaction, IsActivelrMember

N2

Classification Models
- LR SVM-REF I ANN (MIP 64-32) ~ RF
- scaler in pipeline for LR/SVM/ANN

N2

Evaluation Metrics

- Accuracy « Recall (Class 1)
- Precision « F1

| - Recall (Class 1) - ROC-AUC

H 'lﬂ re—\ f—I

- F1 - FPR
- ROC-AUC + DelLong Acc.,, MCC

Figure 2. The Methodology Work Flow of this Study

ble (6) shows Holdout (30%) — Confusion Matrices and
Derived Metrics at Threshold 0.5, and Table (7) shows
the Derived Metrics at 0.5.

The interpretation of tables [(5), (6) and (7)] shows that
SMOTE substantially increases recall (from ~0.218 to
~0.715), but inflates FPR (from ~0.032 to ~0.281)
and reduces overall accuracy. Balanced Accuracy and
Youden’s J improved, indicating better sensitivity, but the
precision dropped markedly. LR’s linear boundary be-
comes more permissive under class balancing, which is
desirable if capturing churn is paramount, despite more
false alarms.

4.1.2. SYM

SVM improved substantially over LR, with a test ac-
curacy of 0.860 and an ROC-AUC of 0.842. Churn
recall increased to approximately 0.393, churn preci-
sion remained very high (PPV ~ 0.83), and the false-
positive rate was extremely low (FPR ~ 0.021). For

SVM, SMOTE led to a substantial gain in churn recall
(from 0.393 to 0.674) and F1-score (from 0.533 to 0.575),
with accuracy remaining relatively high at 0.797 and
ROC-AUC around 0.832. For SVM, Table (8) shows
Cross-Validation (5-fold) — Imbalanced vs. SMOTE, Ta-
ble (9) shows Holdout (30%) — Confusion Matrices and
Derived Metrics at Threshold 0.5, and Table (10) shows
the Derived Metrics at 0.5.

As shown in Tables [(8), (9), and (10)], in the imbalanced
setting, SVM maintained a very low FPR (~0.021) and
high precision, but recall was modest. SMOTE shifts
the operating point; recall increases (to ~0.674) with a
higher FPR (~0.172) and lower precision. Youden’s J
and Balanced Accuracy improved, while overall accuracy
declined, consistent with a stricter vs. more permissive
decision boundary trade-off.

4.1.3. ANN

The artificial neural network (ANN) model achieved the
strongest performance under an imbalance. The ANN at-
tained an accuracy of 0.864, ROC—AUC of 0.858, churn
recall of 0.504, and F1-score of 0.602, with an FPR of
approximately 0.044 and balanced accuracy of 0.730.
However, FPR increased from 0.021 to approximately
0.172, reflecting a shift towards more aggressive churn
detection. The ANN showed a similar pattern: recall
increased to 0.609 and F1-score to 0.548, but accu-
racy dropped to 0.795 and AUC to 0.815, with FPR in-
creasing to 0.157, suggesting some overfitting to syn-
thetic minority examples. For ANN, Table (11) shows
Cross-Validation (5-fold) — Imbalanced vs. SMOTE, Ta-
ble (12) shows Holdout (30%) — Confusion Matrices and
Derived Metrics at Threshold 0.5, and Table (13) shows
the Derived Metrics at 0.5.

It is clear from Tables [(11), (12), and (13)] that the ANN
performs strongly under imbalance with a good AUC and
balanced metrics. After SMOTE, recall increased, but
AUC and accuracy decreased, suggesting mild overfit-
ting to synthetic minority samples and increased false
positives. Threshold tuning or class weights may recover
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Table[8]: Cross-Validation (5-fold) — Imbalanced vs SMOTE

Scenario Accuracy FhEEE e F1 (macro) ROC-AUC
(macro) (macro)

Imbalanced 0.8509 0.8359 0.6637 0.6994 0.8088
Balanced 0.7846 0.6860 0.7224 0.6991 0.8012
Table[9]: Holdout (30%) — Confusion Matrices and Derived Metrics at Threshold 0.5
Scenario TP FP ™ FN A"l‘;':j’;‘;; R"g’é‘f:ﬂ‘c TPR (Recall) FPR
Imbalanced 240 49 2340 371 0.8600 0.841735 0.3928 0.0205
Balanced 412 410 1979 199 0.7970 0.832136 0.6743 0.1716
Table[10]: Derived Metrics at 0.5 (Accuracy, PPV, TPR, TNR, FPR, NPV, F1, Balanced Accuracy, MCC, Youden’s J)
Scenario PPV TPR TNR FPR NPV F1 BalancedAcc Mcc YoudenJ AUC Accuracy
Imbalanced 0.830 0.393 0.10 0.021 0.863 0.533 0.686 0.508 0.372 0.84174 0.860
Balanced 0.501 0.674 0.828 0.172 0.909 0.575 0.751 0.454 0.503 0.83214 0.797

Table[11]: Cross-Validation (5-

fold) — Imbalanced vs SMOTE

. Precision Recall
Scenario Accuracy (macro) (macro) F1 (macro) ROC-AUC
Imbalanced 0.8494 0.7974 0.6888 0.7202 0.8296
Balanced 0.7851 0.6825 0.7097 0.6927 0.7885
Table[12]: Holdout (30%) — Confusion Matrices and Derived Metrics at Threshold 0.5
Scenarlo s P ™ FN A"(';":'L‘I’;‘;; R"g’é‘_’:ﬂ'c TPR (Recall) FPR
Imbalanced 308 104 2285 303 0.8643 0.857637 0.5041 0.0435
Balanced 372 375 2014 239 0.7953 0.814716 0.6088 0.1570

Scenario PPV

TPR TNR

FPR NPV

Table[13]: Derived Metrics at 0.5 (Accuracy, PPV, TPR, TNR, FPR, NPV, F1, B

F1 BalancedAcc

alanced Accuracy,

mcc YoudendJ

MCC, Youden’s J)

AUC Accuracy

Imbalanced 0.748

0.504 0.957

0.044 0.883

0.602 0.730

0.539 0.461

0.85764 0.8643

Balanced 0.498

0.609 0.843

0.157 0.894

0.548 0.726

0.421 0.452

0.81472 0.795

Table[14]: Cross-Validation (5-

fold) — Imbalanced vs SMOTE

Scenario Accuracy FhEEE e F1 (macro) ROC-AUC
(macro) (macro)
Imbalanced 0.8589 0.8294 0.6953 0.7318 0.8369
Balanced 0.8417 0.7580 0.7325 0.7437 0.8406

the balance without relying on oversampling. The results in Tables [(14), (15), and (16)] show the
strongest stability according to RF. With SMOTE, recall
and F1 improved, whereas accuracy and AUC remained
high. FPR increased moderately, but MCC and Balanced
Accuracy remained competitive, making RF a robust
choice across both scenarios.

Overall, SMOTE consistently boosts the churn recall and
F1-scores for all models, but its impact on AUC and
accuracy is mixed. For LR and SVM, oversampling is
particularly helpful in recovering the minority class, albeit
with a substantial increase in false positives. For ANN,
the gain in recall was offset by the reduced AUC, hint-
ing at mild overfitting to the synthetic samples. RF, in
contrast, benefits the most, with improved recall and F1
while maintaining high AUC and accuracy, making it the
best all-round choice in the balanced training scenario as

4.1.4. RF

RF provided the most balanced performance, combin-
ing high discriminative ability (AUC =~ 0.86—0.87) with
substantially improved churn recall compared to LR and
SVM, while still keeping false positives at acceptable
levels. The RF remains the most robust model un-
der SMOTE. Its accuracy is 0.856 and ROC-AUC is
0.872, very close to its imbalanced training performance,
while churn recall improved from 0.484 to 0.619 and F1-
score from 0.598 to 0.636. For RF, Table (14) shows
Cross-Validation (5-fold) — Imbalanced vs. SMOTE, Ta-
ble (15) shows Holdout (30%) — Confusion Matrices and
Derived Metrics at Threshold 0.5, and Table (16) shows
the Derived Metrics at 0.5.
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Table[15]: Holdout (30%) — Confusion Matrices and Derived Metrics at Threshold 0.5

. Holdout Holdout
Scenario TP FP TN FN Accuracy ROC-AUC TPR (Recall) FPR
Imbalanced 296 83 2306 315 0.8673 0.869603 0.4845 0.0347
Balanced 378 199 2190 233 0.8560 0.871556 0.6187 0.0833

Table[16]: Derived Metrics at 0.5 (Accuracy, PPV, TPR, TNR, FPR, NPV, F1, B

alanced Accuracy, MCC, Youden’s J)

Scenario

PPV

TPR

TNR

FPR

NPV

F1

BalancedAcc

mcc

YoudenJ AuC

Accuracy

Imbalanced

0.781

0.485

0.965

0.035

0.880

0.598

0.725

0.545

0.450 0.870

0.867

Balanced

0.655

0.619

0.917

0.083

0.904

0.636

0.768

0.547

0.535 0.872

0.856

Table[17]: The Summary Table

Model Scenario AUC Accuracy TPR FPR PPV F1 BalancedAcc MCC YoudenJ
LR Imbalanced 0.783 0.815 0.218 0.032 0.633 0.324 0.593 0.293 0.185
LR Balanced 0.788 0.718 0.715 0.281 0.394 0.508 0.717 0.362 0.434

SVM Imbalanced 0.842 0.860 0.393 0.021 0.830 0.533 0.686 0.508 0.372
SVM Balanced 0.832 0.797 0.674 0.172 0.501 0.575 0.751 0.454 0.503
ANN Imbalanced 0.858 0.864 0.505 0.043 0.748 0.602 0.730 0.539 0.461
ANN Balanced 0.815 0.795 0.609 0.157 0.498 0.548 0.726 0.421 0.452
RF Imbalanced 0.870 0.867 0.484 0.035 0.781 0.598 0.725 0.545 0.450
RF Balanced 0.872 0.856 0.619 0.083 0.655 0.636 0.768 0.547 0.535

well. Table (17) provides a comprehensive and summa-
rized comparison of all important results for all models in
the case of unbalanced and balanced datasets.

Key takeaways: RF provides the most stable high AUC in
both settings; SVM (imbalanced) is optimal when keeping
FPR very low; LR (SMOTE) is suitable when maximizing
recall is crucial; ANN is strong without SMOTE, but can
lose AUC after oversampling.

4.2. INTEGRATED REsuLTs AND COMPARI-
SON WITH PREVIOUS STUDIES

The detailed and summary Table (17) provides a
multimetric view of how each model behaves under
imbalanced and SMOTE-balanced training. On the
original imbalanced test set, RF and ANN achieved the
strongest overall performance: RF attained the highest
accuracy (approximately 0.87) and ROC-AUC (~0.87)
with a favorable trade-off between churn recall and a low
false-positive rate, whereas ANN yielded the highest
recall for churners among the four models, with only a
modest increase in FPR. SVM performs particularly well
when minimizing false alarms is the priority, combining
high precision and the lowest FPR in an imbalanced
setting, although its churn recall remains moderate. LR
forms a useful linear baseline; however, under imbal-
ance, it suffers from very low recall for churners despite
achieving reasonable accuracy and AUC, illustrat-
ing that accuracy alone can be misleading in this context.

Applying SMOTE to balance the training data system-
atically increases the churn-class recall and F1-scores
across all models, but the extent and side effects differ.
LR with SMOTE delivers the highest recall for churners
(approximately 0.72) and a clear gain in balanced accu-
racy, but this is accompanied by a substantial rise in FPR

and a decrease in overall accuracy, making it most suit-
able when the cost of missing a churner is much higher
than the cost of targeting a non-churner. SVM and ANN
both benefit from oversampling in terms of recall and
F1, yet their ROC-AUC and accuracy decline somewhat,
suggesting mild overfitting to synthetic minority samples
and a shift towards more permissive decision boundaries.
RF again proved to be the most robust: under SMOTE,
it maintained high accuracy and the best ROC-AUC
(=~0.87) while raising churn recall to the 0.62 range of
and maintaining FPR at a moderate level. The associ-
ated balanced accuracy and MCC remained among the
highest, confirming that RF is the most stable choice
across both class distributions.

4.3. CROSS-SCENARIO COMPARISON AND
PRACTICAL IMPLICATIONS

The global comparison of all models and scenarios in
Table (17) highlights clear trade-offs that are important
for banking practices.

e When the accuracy and overall discriminative power
are prioritized, RF is the preferred model. It consistently
delivered the highest or near-highest accuracy (~0.867
imbalanced, 0.856 SMOTE) and ROC—-AUC (~0.87 in
both cases), along with strong F1 and MCC values,
indicating reliable performance in ranking and classifying
churners versus non-churners.

e When minimizing false positives is critical (for example,
when retention campaigns are expensive), SVM on
imbalanced data is attractive: it keeps FPR extremely
low (~0.02) while still detecting a non-trivial subset of
churners and maintaining high precision.

©2026 JAST

Sana’a University Journal of Applied Sciences and Technology

1591


https://journals.su.edu.ye/index.php/jast
https://journals.su.edu.ye/index.php/jast

‘ Ibrahim Ahmed Al-Baltah and Sultan Yahya Al-Sultan.

e When maximizing churn recall is the main objective,
LR with SMOTE achieves the highest recall (~0.72)
and strong balanced accuracy at the expense of
many more false positives and lower overall accuracy.
This configuration is suitable for early warning or
prescreening purposes, where a human or downstream
system can further filter flagged customers.

e ANN performs very well under imbalance, with a
strong AUC and balanced accuracy, but loses some
AUC and accuracy after oversampling. For this dataset,
its best use is in the original imbalanced setting, possibly
combined with threshold tuning or class weights, instead
of heavy oversampling.

From an operational perspective, these results highlight
that no single model is universally optimal; instead, the
preferred configuration depends on business priorities
and cost structures. If a bank wishes to minimize out-
reach to non-churners (e.g., to control campaign costs
or avoid customer irritation), SVM on imbalanced data
offers a very conservative option with low FPR and high
precision. If the main objective is to capture as many
churners as possible, LR or ANN with SMOTE provides
a substantially higher recall at the cost of more false
positives. For most balanced scenarios in which both
accuracy and minority-class recall matter, RF, especially
with SMOTE applied in the training folds only, offers the
most attractive compromise, as reflected in its combina-
tion of high AUC, solid F1, and strong balanced accuracy.

When compared with recent bank-churn studies that em-
ploy similar Kaggle-based or proprietary bank datasets
and classical machine-learning models—for example, [2],
[3], and [5]—the performance of the RF and ANN mod-
els in this work is at the upper end of what is typically
reported, where test accuracies often fall in the high-70%
to mid-80% range and ROC—-AUC values are commonly
in the mid-0.80s. Consistent with these studies, our
results confirm the strong competitiveness of ensemble-
based methods such as RF, while also showing that
oversampling strategies such as SMOTE primarily boost
minority-class recall rather than accuracy or AUC alone.
Moreover, many prior works emphasize overall accuracy
and, in some cases, ROC—AUC but do not systematically
report minority-class (churn) recall, precision—recall AUC,
or statistical tests that quantify uncertainty and compare
scenarios. In contrast, the present study provides a fully
imbalance-aware, multi-metric evaluation that includes
DelLong confidence intervals for AUC, PR-AUC, and Mc-
Nemar tests for paired predictions under imbalanced and
SMOTE-balanced training. Together with the feature im-
portance analysis based on ExtraTreesClassifier, these
contributions position the proposed framework as a rig-
orous and practically informative benchmark for future
work on customer churn prediction in the retail banking

sector. Table (18) summarizes the key findings of some
of the latest related studies compared to this study.

5. CONCLUSION

This study addresses the problem of predicting customer
churn in retail banking using a publicly available
benchmark dataset from Kaggle, which contains 10,000
customers described by 18 demographic, financial, and
behavioral features. The proposed framework explicitly
focuses on class imbalance, which is intrinsic to churn
problems, and compares four widely used supervised
machine-learning models—logistic regression (LR),
support vector machine (SVM), multilayer perceptron
artificial neural network (ANN), and random forest
(RF)—under both imbalanced and SMOTE-balanced
training scenarios. A transparent experimental design
was adopted, combining a stratified 70/30 train—test split,
5-fold stratified cross-validation, and careful separation
of resampling and evaluation steps to avoid information
leakage.

Using an ExtraTreesClassifier for feature importance
analysis, this study found that churn behavior in this
bank is primarily driven by a compact set of variables:
Age, Number of Products, Balance, Credit Score, Points
Earned, Estimated Salary, Tenure, Satisfaction Score,
and IsActiveMember. These predictors jointly capture
customer lifecycle (age, tenure), engagement, product
portfolio (number of products, points earned, active
membership, satisfaction), and financial strength (credit
score, balance, income), reinforcing the view that
churn is a multifactor phenomenon rather than a purely
transactional or demographic one.

On the original imbalanced data, the RF and ANN
delivered the most balanced performance. RF achieved
the highest overall accuracy (approximately 0.867) and
ROC—-AUC (=0.87), with a good compromise between
churn recall, precision, and false-positive rate. ANN
showed similarly strong discriminative ability, with
higher churn recall than SVM and LR and acceptable
false-positive rates. SVM performed well when the
priority was to minimize false positives, achieving a very
low FPR and high precision for churners, but at the cost
of missing more at-risk customers. Although LR served
as a simple baseline, despite reasonable accuracy and
AUC, it exhibited very low recall for churners under
imbalance, confirming that linear decision boundaries
alone are insufficient for reliably detecting minority
classes in this setting.

When SMOTE oversampling was applied only to the
training data, all four models exhibited higher recall
and F1-scores for churners on the held-out test set
but with different trade-offs. LR with SMOTE achieved
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Table[18]: Key Findings of Related Studies Vs. This Study

Bank data & . Imbalance - . Key findings of related
S () imbalance G handling L2 Ll 25 studies vs. this study
Public bank Basic A RF clearly ogtperf:)l.rrqs I'_|R in
churn dataset: preprocessing ccuracy, accuracy and recall; similar to
[28], 2024 moderatel ’ LR, RF o advanced’ precision, our finding that tree-based
. y . recall models dominate LR on bank
imbalanced resampling
churn.
Gradient-boosting methods
Class (especially
Bank churn LR, DT, GBDT, | weighting and Accuracy, LightGBM/XGBoost)
[2], 2024 data XGBoost, tuning; no precision, outperform linear models;
’ (Kaggle-style); CatBoost, detailed recall, reinforces our result that more
imbalanced LightGBM SMOTE ROC-AUC flexible nonlinear models
pipeline (RF/ANN/SVM) outperform
LR.
LR, k-NN,
SVM, DT, RF, Several Ensemble tree models
Large real Bagging resampling outperform classical ML;
[5], 2024 banlgtgerl:aset; AdaBoost, strategies A;%Jéai‘yug aligns with our finding that RF
imbalar?ce GBM, (over/under- is the top performer among
XGBoost, sampling) the four baseline models.
Extra Trees
Show that resampling +
calibration improves both AUC
Europegn LR, RF, SMOTE-type ROC-AUC, and probability quality; our
bank; resampling + Brier score, L
[21], 2024 imbalanced XGBoost, robabilit calibration work similarly shows that
LightGBM probabliily SMOTE improves
churn calibration curves N
minority-class recall and F1,
especially for RF and ANN.
XGBoost achieves ~0.97 on
Bank RF, GBDT Random SMOTE type methods it
. ’ ' oversampling, . -
credit-card Extra Trees, SMOTE Accuracy, interpretability (SHAP, causal
[10], 2025 customers; AdaBoost, Borderliné- precision, inference). Our study is closer
highly XGBoost, SMOTE recall, F1, AUC to baseline models but
imbalanced CatBoost ’ similarly confirms the benefit
ADASYN . ;
of resampling and multiple
metrics.
RF and XGBoost around 86%
accuracy with more balanced
. Accuracy, metrics after resampling. Our
[29], 2025 Ii?r)‘rilgla(lac:g;g’ RF, XGBoost SS,\';AC()).I-.I-EE Em\l precision, results likewise show that RF
recall, F1 maintains strong performance
in both imbalanced and
SMOTE-balanced scenarios.
RF and XGBoost top overall;
resamplling imprclnlvgrsh
. minority-class recall. This
Bank churn; LR, DT, RF, SMOTE- Accqr'?lcy, parallels our comparison of
[22], 2025 strongly k-NN, T K precision, imbal d
imbalanced XGBoost, SVM ome recall, F1 imoatanced vs
’ ’ SMOTE-balanced data, where
SMOTE yields better
sensitivity for churners.
Confirms that ensembles and
hybrid DL models dominate
Various Mainly AUC recent literature; our study
[30], 2025 Cross-sector Many ML and resampling & F1 yand ’ contributes by providing a
’ (incl. banking) DL models cost-sensitive ’ rigorous multi-metric baseline
accuracy .
methods comparison for four core
algorithms in the banking
context.

sharply, making it suitable for applications where missing
a churner is much more costly than incorrectly flagging
a non-churner. SVM and ANN both benefited from

the highest recall for churners (~0.72) and improved
balanced accuracy; however, its overall accuracy
dropped (~0.718) and the false-positive rate increased
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SMOTE in terms of recall and F1 but experienced
moderate increases in FPR and some degradation in
AUC, indicating partial overfitting to the synthetic minority
samples. RF again proved to be the most robust: it
retained high accuracy and ROC—-AUC (x0.87), while
significantly improving churn recall (to ~0.62) and F1,
with a comparatively modest rise in FPR. Across both
scenarios, RF yielded the strongest values for balanced
accuracy and MCC, indicating consistently reliable
discrimination between churners and non-churners.

A key contribution of this study is the use of a multimetric
imbalance-aware evaluation. Rather than relying on
accuracy alone, the study jointly examined churn-class
recall, precision, F1-score, ROC-AUC (with DelLong
confidence intervals), PR—AUC, false-positive rate,
balanced accuracy, MCC, and Youden’s J, as well as
statistical tests (DeLong and McNemar) to compare
scenarios. This richer evaluation revealed that SMOTE
does not uniformly improve all metrics; it is particularly
effective at boosting minority-class recall, but its effect
on the AUC and accuracy depends on the model. For
practitioners, the results highlight that model choice
and imbalance treatment must be aligned with business
priorities: RF for robust, all-round performance, SVM on
imbalanced data when false positives are costly, and LR
with SMOTE when maximizing churn detection is more
important than precision.

From a managerial perspective, the findings suggest
that banks can move beyond simplistic, rule-based
segmentation, and instead deploy machine-learning
models that exploit a small, interpretable set of features,
such as age, product holdings, balance, credit quality,
loyalty points, satisfaction, and activity status, to identify
customers at risk of churn. By selecting an appropriate
model—scenario configuration and threshold according to
their cost structure and risk tolerance—banks can design
more targeted and cost-effective retention campaigns.

This study had some limitations that suggest directions
for future research. First, it relies on a single static
dataset from one bank. Applying the same framework
to multi-bank or longitudinal data with richer behavioral
histories would allow validation of the conclusions
in broader contexts. Second, although SMOTE was
used as a baseline oversampling method, alternative
imbalance-handling strategies, such as SMOTE variants,
class-weighted losses, cost-sensitive learning, and focal
loss, could be explored and compared. Third, although
this study focused on classical supervised models,
future research could investigate calibrated probability
estimates, threshold optimization under explicit cost
functions, or hybrid approaches that combine RF or ANN
with explainability techniques (e.g., SHAP) to provide
more interpretable churn drivers to domain experts.

Despite these limitations, the proposed framework
demonstrates that a carefully designed, imbalance-
aware, and multimetric evaluation on a widely used public
bank-churn dataset can yield robust and actionable in-
sights. In particular, it confirms the strong performance
and stability of RF across both imbalanced and bal-
anced settings, clarifies the circumstances under which
SMOTE is beneficial, and shows how different model
choices translate into concrete trade-offs between cap-
turing churners and avoiding unnecessary intervention.
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