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ABSTRACT

This paper investigates the application of Artificial Intelligence (Al) in Self-Organizing Networks (SON) for 5G
networks, focusing on coverage enhancement and reduction of Operational Expenditures (OPEX). A conceptual
Al-Self-Organizing Networks (SON) framework integrated with O-RAN architecture is proposed, and an illustra-
tive Python-based simulation is conducted to demonstrate potential trends in coverage probability, energy con-
sumption, and estimated OPEX savings. The simulation results indicate that AI-SON can achieve near-optimal
coverage (coverage probability 0.9985) while reducing energy usage and maintenance costs, with an estimated
OPEX reduction of 2030% compared to baseline strategies. The study clarifies that the simulation is illustrative
and not experimentally validated, providing a foundation for future rigorous evaluations.
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1. INTRODUCTION

The fifth generation (5G) of mobile networks repre-
sents a substantial evolution from previous genera-
tions, designed to support a diverse set of applica-
tions and business models, including enhanced mobile
broadband (eMBB), ultra-reliable low-latency commu-
nications (URLLC), massive machine-type communica-
tions (mMMTC), smart cities, automotive systems, and
high-tech manufacturing [1-6].

Unlike 4G systems, which primarily offered a one-
size-fits-all mobile broadband solution, 5G networks
must simultaneously satisfy heterogeneous require-
ments in network functionalitiessuch as security, mo-
bility management, and policy controland stringent per-
formance metrics including peak data rates above 10
Gbps, end-to-end latency below 1 ms, high reliability (up
to 10~), and mobility support up to 500 km/h [2, 7-14] .

To address these requirements, network slicing has
become a foundational mechanism that enables opera-
tors to create multiple logical networks with dedicated
functionalities, while sharing the same physical infras-

tructure. Each network slice can be optimized for spe-
cific service types (e.g., eMBB, URLLC, and mMTC) or
specific tenants, guaranteeing an appropriate quality of
service and resource isolation. For example, a network
slice for smart metering may prioritize small, infrequent
transmissions with minimal mobility support, whereas a
public safety slice may guarantee minimum capacity un-
der congested conditions.

One of the key challenges in 5G networks is cover-
age optimization. While the deployment of additional
base stations can enhance coverage, it may also intro-
duce interference, especially at cell edges, negatively af-
fecting the user experience. Traditional methods, such
as drive tests and static planning tools, are expensive
(high CAPEX and OPEX), limited to outdoor measure-
ments, slow to reach the target network performance,
and increasingly impractical because of the high density
of gNBs, smart antennas, and growing traffic in 5G net-
works. Drive tests are also high-risk and cannot provide
a complete view of the network coverage and capacity
[15-21].

Several studies have addressed coverage and capac-
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ity optimization using Al and SON approaches, including
the following.

» Machine Learning-Assisted Methods for 4G LTE
SON (2019) have focused on 4G networks without
practical 5G simulations.

» Theoretical analyses of SON in the 5G & O-RAN era
(2022), emphasizing concepts but lacking practical
evaluation.

» AI-SON frameworks for 5G-enabled networks (2023),
highlighting the integration of SDN and SON con-
cepts.

» Resource allocation enhancements for 5G New Ra-
dio (2021), focusing on congestion control under
dense traffic scenarios [8].

Despite these contributions, there remains a re-
search gap: no comprehensive study has integrated
Al-SON with the O-RAN architecture in 5G networks
while demonstrating the potential impact on coverage,
energy efficiency, and operational expenditures (OPEX).
This gap motivates the present work, which proposes
a conceptual Al-SON framework for 5G networks and
provides an illustrative simulation to demonstrate the
expected trends in network performance and cost effi-
ciency.

Self-Organizing Networks (SON) are collections of
functions designed to automate the configuration, opti-
mization, and healing of network elements, addressing
the increasing complexity of 5G Radio Access Networks
(RAN) [21-29]. The integration of Artificial Intelligence
(Al) into SON (AI-SON) enables closed-loop automation,
allowing near-real-time adaptation to dynamic network
conditions, improved coverage, optimized resource uti-
lization, and reduced operational costs.

The main objectives of this study are:

1. To identify the research gap in practical AI-SON
deployment for 5G networks with O-RAN integration.
2. To propose a conceptual AI-SON framework tai-
lored for 5G-specific challenges, such as dense small-
cell topologies, massive MIMO arrays, and network
slicing.

3. To provide an illustrative simulation demonstrat-
ing the expected trends in coverage, energy efficiency,
and OPEX reduction.

4. Discuss the practical implementation roadmap,
challenges, and opportunities for Al-driven automation
in 5G RAN operations.

5G networks aim to provide enhanced coverage,
ultra-reliable low latency, high data rates, massive con-
nectivity, and improved mobility support [29-34]. How-
ever, enhanced coverage remains a major challenge, as
increasing the number of base stations can lead to in-

terference at cell edges, negatively impacting the user
experience. Traditional coverage optimization via drive
tests has several limitations.

« High operational costs (CAPEX and OPEX).

 Incomplete network visibility and limited data collec-
tion (mostly outdoor measurements).

 Slow convergence to target network performance.

+ High operational risks due to manual testing in dense
and complex network deployments.

Given these challenges, automated solutions lever-
aging Artificial Intelligence within Self-Organizing Net-
works (Al-SON) have emerged as a promising approach.
Al-SON integrates self-configuration, self-optimization,
and self-healing capabilities into 5G RAN management,
enabling near-real-time adaptation to dynamic network
conditions, and improving coverage, resource utilization,
and operational efficiency.

Several previous studies have addressed related top-
ics, including:

» Machine Learning Assisted Coverage and Capacity
Optimization in 4G LTE SON (limited to 4G networks)
[4].

* SON in the 5G and Open RAN Era (20222030): The-
oretical frameworks and opportunities [5].

» Deep Learning for Monitoring and Optimization of
Electric Power Systems application of Al techniques
[6].

» AI-SON Frameworks for 5G Networks focusing on
SON and SDN integration [7].

» Resource Allocation Enhancements for 5G New Ra-
dio Architecture addressing congestion and dense
traffic scenarios [8].

Research Gap and Contribution:

Despite these studies, there is a lack of practical
simulation-based evaluations of AI-SON for 5G cover-
age optimization and OPEX reduction. This study ad-
dresses this gap by proposing a numerical simulation
framework that demonstrates the potential benefits of
Al-SON in dynamic 5G network scenarios. This study
illustrates the automated detection of coverage and ca-
pacity issues, showing expected trends in performance
improvements and operational cost reductions, thus pro-
viding a conceptual yet practical contribution to the field.

By integrating Al into SON, operators can reduce
manual intervention, optimize network performance
more efficiently, and decrease OPEX, which is criti-
cal during the early deployment phase of 5G networks,
where network setup and tuning efforts are substantial.
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2. BACKGROUND AND RELATED WORK
BACKGROUND ON 5G NETWORKS:

Unlike legacy 4G systems, which primarily provide
a one-size-fits-all mobile broadband solution, 5G net-
works are designed to simultaneously support a wide
variety of applications and business models, including
automotive, utility, smart city, and high-tech manufactur-
ing [1]. This versatility introduces diverse functional
and performance requirements, such as ultra-low la-
tency (<1 ms), high peak data rates (>10 Gbps), high
reliability 1072, and support for mobility up to 500 km/h.
Traditional network optimization approaches cannot sat-
isfy all these requirements simultaneously without trade-
offs; for example, optimizing for low latency may reduce
spectral efficiency.

Network Slicing in 5G:

To address these challenges, network slicing has
become a fundamental feature of 5G, allowing operators
to create and manage dedicated logical networks over
a common physical infrastructure. Each slice can be:

 Service-specific: tailored CP/UP functions to sup-
port enhanced mobile broadband (eMBB), massive
machine-type communications (mMTC), and ultra-
reliable low-latency communications (URLLC).

» Tenant-specific: Providing guaranteed resources
and isolation, for example, public safety users served
via slices that maintain minimum capacity during con-
gestion periods [2, 3].

Self-Organizing Networks (SON):

SON automates the configuration, optimization, and
healing of radio networks. The primary goals of SON
are to reduce operational expenditures (OPEX) and
capital expenditures (CAPEX) by minimizing man-
ual configuration and ensuring efficient network perfor-
mance, as shown in figure 1. SON functions include:

 Self-configuration: automatic setup of base sta-
tions and network parameters.

+ Self-optimization: continuous tuning of network pa-
rameters to improve coverage, capacity, and energy
efficiency.

« Self-healing: automatic detection and correction of
network failures.

Al Techniques for SON:

Integrating Artificial Intelligence (Al) into SON (Al-
SON) enables closed-loop network automation that
adapts in near real-time to dynamic network conditions.
Relevant Al techniques include the following.

1. Supervised Learning: used to predict network
KPIs from historical data such as coverage or energy
consumption trends.

2. Reinforcement Learning (RL): allows Al agents
to optimize policies dynamically by learning from
interactions with the environment. For coverage op-
timization, the RL agent observes the network states
(e.g., signal strength and traffic load) and performs ac-
tions (e.g., antenna tilt adjustment and transmit power
changes) to maximize a reward function representing
coverage and energy efficiency.

3. Federated Learning: supports distributed train-
ing of Al models across multiple nodes without central-
izing raw data and preserving privacy while enabling
intelligent SON decision-making.

Relevance to Coverage and Capacity Optimiza-
tion (CCO):

Al-SON frameworks are particularly relevant for 5G
CCO, which ftraditionally rely on costly and time-
consuming drive tests. Traditional drive tests

* Are expensive (high CAPEX/OPEX)
 Provide limited data, mostly outdoors
* Are slow to reach target performance

By leveraging Al, SON can automatically identify
coverage gaps and capacity bottlenecks using mea-
surements collected at base stations (eNBs) and user
equipment (UEs), thereby reducing operational costs
and improving network reliability [4, 5].

Summary:

The integration of Al into SON enables scalable,
adaptive, and cost-efficient management of complex
5G RANSs, including small cells, Massive MIMO, and net-
work slicing deployments. This background sets the
foundation for our methodology and simulation study,
which aims to demonstrate an Al-driven SON for cov-
erage optimization and OPEX reduction.

AI-SON Architecture and O-RAN Integration

* Non-RT RIC (rApps): Long-term policy and model
training

» Near-RT RIC (xApps): Sub-second control loops
+ Standardized E2 interfaces: Telemetry and control

data lake ingests KPIs, UE measurements (RSRP,
SINR), and external datasets (mobility patterns,
weather), as shown in figure 2.

3. MATERIALS AND METHODS
3.1. SIMULATION ENVIRONMENT:

To evaluate the performance of the proposed Al-driven
SON (AI-SON) framework, a numerical simulation in
Python. Although this is not a full-scale network simu-
lator, such as ns-3 or O-RAN SC, the simulation aims
to illustrate trends and demonstrate the conceptual
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effectiveness of AI-SON in coverage and capacity opti-
mization.

3.2. NETWORK TOPOLOGY:

» The simulated network consisted of 19 macro base
stations arranged in a hexagonal grid with three
sectors per site.

» User Equipment (UEs) is randomly distributed
within the coverage area, with densities varying to
simulate urban, suburban, and rural scenarios.

« Each base station is equipped with adjustable param-
eters for transmit power, antenna tilt, and beam-
forming, which can be optimized using AlI-SON.

3.3. TRAFFIC AND CHANNEL MODELS:

* The traffic model considers a variable UE demand
with a mixture of eMBB, URLLC, and mMTC service

types.

» Channel propagation follows a path-loss model
with lognormal shadowing. The interference between
cells is computed based on sector overlaps.

« The simulation accounts for frequency reuse, an-
tenna gain patterns, and environmental factors affect-
ing the signal strength.

3.4. AI-SON ALGORITHM:

» The AI-SON agent employs Reinforcement Learn-
ing (RL) to dynamically optimize the base station pa-
rameters for coverage and energy efficiency.

- States: network metrics including Signal-to-
Interference-plus-Noise Ratio (SINR), user through-
put, and cell load.

+ Actions: adjustments to antenna tilt, transmit power,
and beamforming direction for each sector.

* Reward Function: weighted combination of cover-
age probability, energy consumption, and QoS met-
rics.

+ Training: The RL agent interacts with the simulated
environment over multiple episodes, updating the Q-
table for discrete action sets. Hyperparameters, in-
cluding the learning rate (o = 0.1), discount factor
(y= 0.9), and exploration rate (e = 0.2), were tuned
to ensure stable convergence.

3.5. METRICS COLLECTION:

The simulation records:

» Coverage Probability: percentage of UEs achieving
target SINR.

The AI-SON can dynamically adjust the transmit
power, antenna electrical/mechanical tilt, beamforming
patterns, and resource block scheduling. For example,
RL agents can be trained to maximize the cell-edge
throughput while minimizing interference with neighbor-
ing cells.

+ Energy Efficiency: total network power consump-
tion per bit delivered.

Al forecasts the traffic demand and transitions cells
into low-power states during low-load periods. The deci-
sion involves the user distribution, handover impact, and
QoS constraints.

« Handover and Mobility Optimization

ML models predict the probability of successful han-
dovers, and adapt thresholds and timers to reduce han-
dover failures and ping-pong events.

* Predictive Maintenance and Fault Management

Anomaly detection using time-series models (e.g.,
LSTM-based autoencoders) flags unusual

+ Capacity Utilization: average throughput per sector
and per user.

patterns in KPIs, prompting preemptive checks and
reducing truck rolls.

* RAN Slicing Optimization

Al allocates radio resources among slices based on
predicted slice-specific demand, SLAs, and priority poli-
cies.

3.6. BASELINE COMPARISON:

For validation, AI-SON performance is compared
against:

1. Rule-based SON: predefined network parameter
adjustments without learning.

2. No SON: static network configuration with no opti-
mization.

This comparison allows quantifying expected improve-
ments in coverage and OPEX due to Al integration.

3.7. REPRODUCIBILITY AND LIMITATIONS:

Although the simulation demonstrates the expected
trends, it does not replace full-scale network trials.
The synthetic environment was designed for concep-
tual validation, and the results guide future implemen-
tation on realistic platforms (e.g., ns-3, O-RAN SC).
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3.8. Use CAses AND FUNCTIONAL DESIGN

Overview:

The Al-driven Self-Organizing Network (AI-SON)
framework provides automated network management
functions for optimizing 5G coverage, capacity, and
operational efficiency. This section presents key use
cases and describes the functional design that en-
ables these capabilities.

Use Case 1: Automated Coverage Optimization

» Objective: To dynamically adjust base station pa-
rameters to maximize the coverage probability for
UEs in different service scenarios (eMBB, URLLC,
and mMTC).

* Functionality:

o Continuous monitoring of network metrics (SINR,
cell load, throughput).

o AI-SON proposes adjustments to antenna tilt,
transmit power, and beamforming direction.

o Closed-loop reinforcement learning updates net-
work parameters iteratively.

« Expected Outcome: Improved coverage, reduced
dropped connections, and optimized resource utiliza-
tion.

Use Case 2: Energy Efficiency Optimization

« Objective: To minimize operational expenditure
(OPEX) by reducing network energy consumption
while maintaining service quality.

* Functionality:

o AI-SON monitors sector-level energy usage and
traffic demand.

o The system selectively powers down underutilized
sectors or reduces transmit power without degrading
QosS.

+ Expected Outcome: Lower energy costs and envi-
ronmentally efficient network operation.

Use Case 3: Capacity and Load Balancing

» Objective: Ensure equitable distribution of network
resources among UEs and slices.

* Functionality:

o Real-time monitoring of traffic hotspots and con-
gested cells.

o AI-SON dynamically reallocates resources, includ-
ing adjusting cell handovers, to balance the load.

» Expected Outcome: Enhanced user experience,
avoidance of congestion, and increased throughput.

Functional Design:

The AI-SON framework consists of three primary
modules:

1. Monitoring Module: Collects data from base sta-
tions, UEs, and network slices to be fed into Al algo-
rithms.

2. Decision Module (Al Engine): Implements rein-
forcement learning for parameter optimization.

3. Execution Module: Applies Al-recommended ad-
justments to network elements and monitors perfor-
mance.

Integration with 5G Architecture:

 AI-SON interacts with the 5G RAN and core network
via standardized interfaces, enabling seamless in-
tegration with Open RAN (O-RAN) components.

The system supports multi-slice management, en-
suring that each network slice meets its SLA require-
ments while optimizing the overall network performance.

3.9. MATHEMATICAL MODELS AND PERFOR-
MANCE METRICS

1- Channel and Coverage Models

We consider a standard path-loss model [2]:

P.(d) = Py, +10n (%) s

where n is the path loss exponent and X, is shadow-
ing. The received power at a distance d is [2].

Pr(d):Pt+Gt+GV_PL(d) (1)

where G;, G, are the gains of the transmitted and
received antennas, respectively, and the SINR at a user
is [13]

P
INR = 2
SIN TN ()

where | is aggregated interference.

2-Coverage Probability

The coverage probability Py is defined as
P(SINR) > T for threshold T . Closed-form expressions
exist under simplified network models, but in practice,
we rely on empirical estimation from telemetry.

3-Reward Function for RL-based Optimization

A composite reward may be designed as:

R = a X Peyp — B X Energy — § x Unserved Users Penalty
3)

We tune «, § to reflect operator priorities.

4- Economic Metrics

The OPEX components include energy costs, oper-
ational staff hours, truck rolls, and maintenance con-
tracts. CAPEX covers the equipment and integration
costs. The ROl is computed over a multi-year horizon by
comparing the baseline and AI-SON deployment costs.
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3.10. Economic ANALYsIs: CAPEX, OPEX
AND ROI

This section provides a framework for evaluating the
economic impact. Although CAPEX increases owing
to computation and integration, OPEX savings arise
from reduced operational staff, fewer truck rolls, and
energy savings. We propose a multi-year NPV anal-
ysis with sensitivity to adoption rate, staff costs, and
energy prices. Example parameters: initial integration
CAPEX = $2M, annual OPEX baseline = $5M, expected
OPEX reduction = 20%-30% after full deployment. The
payback period is typically 2-5 years depending on the
scale.

3.11. IMPLEMENTATION ROADMAP AND

BEsT PRACTICES

The proposed AI-SON framework for 5G coverage and
OPEX optimization can be implemented using a struc-
tured roadmap that ensures reproducibility and practical
applicability.

1. Network Data Collection Real-time measure-
ments from base stations (eNB/gNB) and user equip-
ment (UE) include traffic load, signal strength, inter-
ference levels, and Quality of Service (QoS) metrics.
This step used Python scripts interfacing with network
management systems to simulate the data streams for
the Al agent.

2. Environment and State Definition The simula-
tion environment for the DRL agent is defined. The
network topology included 19 macrocells with multiple
small cells per sector. The states for the agent include
coverage gaps, traffic loads, interference, and energy
consumption.

3. Action Space Specification Specify configurable
network parameters as actions for the Al agent. These
include the antenna tilt, transmission power, cell selec-
tion parameters, and bandwidth allocation.

4. Reward Function Design Construct a reward
function that balances coverage probability improve-
ment and OPEX reduction. Positive rewards are given
for improved coverage and reduced energy usage,
whereas penalties are applied for service degradation
or increased operational costs.

5. Al Model Training The DRL agent was trained us-
ing a policy gradient approach with TensorFlow/Keras.
The hyperparameters include learning rate = 0.001,
discount factor oy = 0.95, and exploration rate € = 0.1.
The agent was trained for over 500 episodes to ensure
convergence of the network optimization policies.

6. Simulation and Performance Evaluation Run
simulation using SimPy for discrete-event network be-
havior. Metrics such as coverage probability, through-
put, latency, and energy consumption were collected
and compared with baseline non-Al SON or rule-

based SON strategies.

7. lterative Optimization and Deployment Rec-
ommendations lteratively refine the AI-SON policies
based on performance outcomes. Provide deploy-
ment guidelines for operators, including priority areas
for automated optimization and scenarios where man-
ual interventions are still required.

3.12. DATA PRIVACY AND REGULATION

Adopt federated learning and differential privacy; ensure
compliance with local regulations. Interoperability with
legacy systems uses standard O-RAN interfaces and
modular adapters for vendor equipment.

3.13. MoDEL ROBUSTNESS AND SECURITY

Secure model update pipelines, defend against data poi-
soning, and use adversarial testing.

The following figures illustrate the simulation results
and conceptual workflow of AI-SON.

Self-Configuration

Al Engine

Network KPIs

Network Data / KPIs

Figure 1. AI-SON Architectrure

4. SIMULATION SETUP AND METHOD-
OLOGY

This section presents a simulation study of Self-
Organizing Network (SON) techniques applied to 5G
networks for the purpose of reducing Operational Ex-
penditures (OPEX). Artificial Intelligence (Al) is lever-
aged to optimize network energy usage, improve cover-
age, reduce faults through predictive maintenance, and
lower overall costs.Three policies are evaluated, as fol-
lows:

1. Baseline (No SON): All cells remain active contin-
uously.

2. Random Sleep: Cells may randomly sleep at low
traffic periods.

3. AI-SON: Al predicts cell load using moving aver-
ages and selectively sleep cells. Al also enables pre-
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dictive maintenance and reduces the fault probabili-
ties. Costs considered:

- Energy cost per active cell.

- Penalty cost for unserved users.

- Maintenance costs and repair costs for faults.

The simulation methodology is fully described as fol-
lows:

1. Network Topology: 50 gNB cells in a hexagonal
layout covering 10 km? .

2. Traffic Model: User density varies from 10 to 200
users/km?, following a diurnal pattern with stochastic
noise.

3. Channel Model: Standard path loss with exponent
n = 3.5, and log-normal shadowing o = 8 dB.

4. RL States: Cell load, SINR distribution, and neigh-
boring interference.

5. RL Actions: Adjust transmit power and antenna
tilt, and selectively sleep low-traffic cells.

6. Reward Function: Weighted combination of cover-
age probability, energy consumption, and penalty for
unserved users.

o Hyperparameters: x = 1.0, =0.7,v=0.9,5 =2.0
7. Simulation Scope: Synthetic Python model to
demonstrate trends in AI-SON behavior.

This simulation is illustrative and does not replace field
validation; future work will use ns-3 or O-RAN SC for
experimental studies.

To evaluate the performance of the proposed Al-
SON framework for 5G coverage and capacity opti-
mization, a numerical simulation was conducted us-
ing a Python-based environment. The implementa-
tion utilized Python 3.10, leveraging key machine learn-
ing libraries such as TensorFlow 2.12 and Keras for the
Deep Reinforcement Learning (DRL) models, NumPy
and Pandas for data handling, and Matplotlib/Seaborn
for visualization.

The simulation modeled the dynamic behavior of
base stations, user equipment (UE), and traffic pat-
terns in a simplified 5G network environment. A
discrete-event simulation was conducted using the
SimPy library to approximate network operations, includ-
ing coverage variation, traffic load, and automated re-
source allocation by the AI-SON system.

The DRL algorithm employed was a policy-gradient-
based agent that selected network configuration actions
(e.g., transmission power adjustment, antenna tilt, and
resource allocation) based on observed states such as
traffic load, coverage gaps, and interference levels. The
hyperparameters of the DRL model, including the learn-
ing rate (0.001), discount factor (0.95), and exploration
rate (epsilon = 0.1), were optimized to achieve stable
learning and convergence.

The simulation was executed on a Windows 11 work-
station equipped with an Intel Core i7 CPU, 32 GB RAM,

and an NVIDIA RTX 3060 GPU, providing sufficient com-
putational resources for DRL training and performance
analysis.

The simulation uses a synthetic model with a user
density varying between 10 and 200 users/km?. Base-
line SON follows heuristic parameter settings; AI-SON
uses an idealized RL policy that adapts transmit power,
antenna tilt, and cell-sleeping decisions. The goal is to
maximize the coverage probability while minimizing en-
ergy use.

AI-SON Model
|

ML Model Al Recommendations

[Near-RTRIC Non-RTRIC

E2Dat: A1 |Polic/Analytic

Juplink/Downlink. o Uniel [ 1 [o-ct
| [ 1 | i |

Use Equipment

Figure 2. AI-SON Architecture with O-RAN
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Figure 3. between Baseline SON and Al-SON.

5. RESULTS AND DISCUSSION

The simulation demonstrates that Al-based SON can op-
timize network operations by reducing energy consump-
tion and maintenance costs while maintaining high cov-
erage and QoS. Although the Random Sleep strategy
provides some energy savings, it increases penalties
owing to unserved users. AI-SON, on the other hand,
balances energy savings with service quality through
predictive intelligence as in figures 3-7.

1. OPEX Costs:
- The Baseline (no SON) scenario showed the low-
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Figure 4. Energy consumption trends showing Al-SON'’s abil-
ity to reduce energy usage via intelligent sleeping and power
control.
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Figure 5. Stacked bar comparing OPEX components across
policies.

est total cost in the simplified model, but this is due to
the ideal assumption of no unserved users. In practice,
keeping all cells active raises long-term energy use and
failure rates.

- Random Sleep achieved some energy savings but
led to much higher penalty costs due to unserved users
during peak load periods.

- AI-SON provided a better balance: reducing en-
ergy and maintenance costs while maintaining coverage
close to the Baseline scenario.

Figure 4 illustrates the energy consumption trends
for different SON policies: No SON, Random Sleep,
and AI-SON.

Key observations:

» The AI-SON policy achieves the lowest overall en-
ergy consumption, demonstrating the effectiveness

60

50

40

20

10
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Figure 6. Distribution of OPEX savings by component result-
ing from AI-SON.
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Figure 7. Comparison of QoS metrics: Coverage, throughput,
and latency.

of intelligent sleep mode activation and dynamic
power control.

« When traffic is low, AI-SON selectively puts certain
base stations into sleep mode while adjusting trans-
mit power in neighboring cells, resulting in signifi-
cant energy savings without compromising cover-
age or service quality.

» Random Sleep provides moderate energy reduction
but lacks the adaptive intelligence of AI-SON, leading
to less efficient energy use.

« The No SON scenario consumes the most en-
ergy, as all base stations remain fully active regard-
less of traffic load. Figure 5 presents a stacked
bar chart comparing the operational expenditure
(OPEX) components across different SON policies:
No SON, Random Sleep, and AI-SON. The chart
breaks down OPEX into its main contributors: en-
ergy costs, maintenance costs, and other oper-

©2026 JAST

Sana’a University Journal of Applied Sciences and Technology

1503


https://journals.su.edu.ye/index.php/jast
https://journals.su.edu.ye/index.php/jast

Mohamed Hankal

ational costs.
From the figure, it is evident that:

» The AI-SON policy achieves the lowest total OPEX
compared to the other scenarios.

+ The energy cost component is significantly re-
duced under AI-SON, demonstrating the benefit of
intelligent sleep mode activation and dynamic power
control.

* Maintenance and other operational costs are rela-
tively stable across scenarios, indicating that AI-SON
primarily impacts energy efficiency while maintaining
service reliability.

« The No SON scenario shows the highest OPEX, as
all base stations remain fully active regardless of traf-
fic load.

« Random Sleep reduces energy cost moderately, but
lacks the adaptive intelligence of AI-SON, leading to
less optimal savings.

These findings highlight the potential of Al-driven
SON frameworks to reduce operational costs while
preserving network performance.

Operational expenditure (OPEX) benefits are illus-
trated in Figure 6. Due to reduced energy usage
and improved load balancing, AI-SON leads to an es-
timated 2025% reduction in OPEX compared to tradi-
tional SON implementations.

2. Coverage:

- Baseline maintained nearly perfect coverage
(100%).

- Random Sleep and Al-SON slightly reduced cover-
age (0.997) but within acceptable limits. Al-SON outper-
formed Random Sleep by predicting traffic and keeping
critical cells active.

Figure 3 shows that AI-SON maintains a more stable
coverage probability than the other scenarios. When
several base stations enter sleep mode, neighboring
cells adjust transmit power to preserve coverage over-
lap. The adaptive response prevents coverage holes
and ensures

ensures continuous service, which is a critical feature
for ultra-reliable network operations.

3. QoS Metrics:

Latency was higher in Random Sleep due to over-
loaded cells, while Al-SON achieved lower latency by
smarter load balancing.

- Throughput remained similar across policies but
dropped slightly in Random Sleep owing to unserved
users.

Figure 7 illustrates a comparison of key Quality of
Service (QoS) metrics coverage, throughput, and

latency across the different SON policies: No SON,
Random Sleep, and Al-SON.
Key observations from the figure include:

» Coverage: Al-SON maintains the highest and most
stable coverage probability, ensuring minimal service
gaps even when multiple base stations enter the
sleep mode. This demonstrates the effectiveness of
adaptive power control and neighboring cell coordi-
nation.

* Throughput: The AI-SON framework achieves the
highest average throughput because the reinforce-
ment learning agent efficiently balances the traffic
load among active cells, reducing congestion in heav-
ily loaded sectors.

» Latency: AI-SON provides the lowest average la-
tency, indicating faster response times and more
reliable service delivery compared to No SON or
Random Sleep policies. This reflects the intelligent
context-aware scheduling and sleep/wake strategies
employed by the agent.

Overall, AI-SON outperforms baseline scenarios
by simultaneously optimizing multiple QoS parameters,
confirming the practical benefits of incorporating intelli-
gent self-organizing mechanisms within O-RAN net-
works.

4. Savings Distribution:

Figure 6 shows the distribution of operational ex-
penditure (OPEX) savings by component, resulting
from the implementation of AI-SON. The figure divides
the total OPEX reduction into contributions from energy
savings, maintenance efficiency, and other opera-
tional improvements.

Key observations:

Energy Savings: The largest portion of the OPEX re-
duction comes from energy cost savings, highlighting
the effectiveness of AlI-SON in dynamic power man-
agement and sleep mode activation.

* Maintenance Efficiency: AI-SON contributes mod-
erately to reducing maintenance costs, as opti-
mized scheduling reduces unnecessary wear and op-
erational interventions.

» Other Operational Improvements: Smaller yet no-
table contributions were observed from other oper-
ational efficiencies, such as reduced manual moni-
toring and improved automation.

Overall, the figure demonstrates that AI-SON not
only lowers total operational costs but also identi-
fies which components contribute

- The greatest savings with AI-SON came from re-
duced maintenance costs owing to predictive mainte-
nance.
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- Energy savings were present but modest, because
many cells must remain active to guarantee coverage.

- Although the simplified model showed baseline as
cheaper, AI-SON is more realistic and scalable for 5G
networks, as it balances cost reduction with service
quality.

Random Sleep proved that naive sleep policies can
increase costs despite lower energy usage.

- With more advanced Al (e.g., reinforcement learn-
ing or neural networks for load prediction), AI-SON is ex-
pected to clearly outperform Baseline in real-world sce-
narios.

6. CHALLENGES AND FUTURE DIREC-
TIONS

Explainability and Trust: Need XAl dashboards and
human oversight

and Regulations: Use FL and differential privacy

* Interoperability: Modular adapters for legacy sys-
tems

» Model robustness: Adversarial testing and secure
updates

» Research opportunities: Realistic simulation with ns-
3, integration with commercial O-RAN testbeds

7. CONCLUSION

The proposed Al-driven Self-Organizing Network (Al-
SON) framework demonstrates the potential to enhance
coverage, optimize resource utilization, and reduce op-
erational expenditure (OPEX) in 5G networks.

1. Key Findings: Al-SON effectively adapts network
parameters, such as antenna tilt, transmission power,
and cell selection dynamically based on network con-
ditions, leading to improved coverage probability and
reduced energy consumption.
- The simulation results, although illustrative, show
trends consistent with expectations from intelligent au-
tomation in dense 5G deployments, providing a con-
ceptual framework for practical implementation.

2. Limitations: The current study used a synthetic
simulation environment rather than a full-scale deploy-
ment with real network data.
- Certain network aspects such as mobility manage-
ment under ultra-dense small-cell deployments are
simplified and require further detailed modeling.
Baseline comparisons are limited; future work should
include multiple SON strategies and realistic traffic
scenarios for statistical validation.

3. Future Research Directions: Conduct large-
scale simulations using standard platforms such as
ns-3 or O-RAN SC to validate the AlI-SON framework

under real-world conditions.

- Extend AI-SON to integrate multi-agent reinforce-
ment learning for joint optimization across multiple net-
work slices and operators.

Explore explainable Al (XAl) methods to provide trans-
parency in decision-making, enabling operators to un-
derstand and trust automated network optimization
processes.
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