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Abstract
The rapid development of various advanced technologies, including the Internet of Things (IoT), coupled with
users’ heavy reliance on technology in various aspects of their daily lives, has led to an increase in the number of
devices connected to the Internet. As a result of this rapid growth, the amount of data generated will increase sig-
nificantly, as the Internet of Things covers many areas, from industrial and healthcare sectors to smart cities and
smart homes. However, many challenges, attacks, vulnerabilities, and various anomalies related to the security
of IoT devices arise, negatively impacting individuals and organizations. Several anomaly detection techniques
have emerged, including machine learning and deep learning, which in turn detect anomalies. This enhances the
security, integrity, reliability, and effectiveness of IoT systems. This paper provides a comprehensive survey of
peer-reviewed articles from 2018 up to the present that focus on machine learning and deep learning in anomaly
detection and attacks on various layers of the Internet of Things architecture. The survey results provide potential
insights and recommendations for future research endeavors.
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1. INTRODUCTION

With increasing development in the field of communica-
tions and information technology, significant progress
has been made in improving the accuracy and efficiency
of business and increasing productivity [1]. Currently,
Internet connectivity is crucial in numerous fields, with
more than 5.45 billion users globally. [2]. In recent years,
there has been a significant transformation in the ad-
vancement of various technologies, including the Internet
of Things (IoT) and smart-device communications[3]. An
extensive and heterogeneous network of devices con-
nected by sensors and actuators via wired and wireless
networks constitutes the Internet of Things, allowing dif-
ferent objects and smart devices to communicate with
each other over the Internet [3].

IoT networks consist of a group of devices intercon-
nected by various communication protocols, hardware,
and operating systems [4]. IoT technologies are impor-
tant for developing applications in various fields, such as

education, agriculture, transportation, healthcare, and
home automation [5]. The total number of connected
devices worldwide is approximately 17 billion, with 7 bil-
lion being Internet of Things devices, excluding laptops,
smartphones, and tablets. The number of devices is
expected to reach 75.44 billion by the end of 2025 [5].
The number of studies from 2000 to 2019 in IoT was
approximately 9589 [6].

In the healthcare sector, IoT applications are expected
to contribute an annual growth rate of between $1.1 tril-
lion and $2.5 trillion in 2025, with a global impact es-
timated between $2.7 trillion and $6.2 trillion [7]. IoT
devices are designed to configure themselves indepen-
dently, allowing them to connect to networks without a
manual configuration. This is accomplished using var-
ious protocols and technologies. These devices can
easily connect to networks, discover services, and adjust
their configurations without extensive manual interven-
tion [8]. As IoT becomes more integrated into everyday
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life, the adoption of IoT-based devices is on the rise [7].
Owing to the IoT architecture, problems of latency, device
heterogeneity, compatibility, power consumption, power
availability, communication, bandwidth, security, privacy,
scalability, energy efficiency, and lack of standard proto-
cols, which in turn creates a gap in IoT [6].

Owing to this scale and heterogeneity, it is difficult to
implement security measures on devices, which leads to
security vulnerabilities [4]. This attracts malicious actors
seeking to exploit the technology [7].The increasing num-
ber of devices not only increases the opportunities and
attack surface, but also exposes many security vulnera-
bilities that attackers exploit to gain access to IoT devices
and compromise data. Therefore, monitoring system be-
havior is essential for early detection and prevention of
threats and vulnerabilities [9].

Internet-connected devices require resource-intensive
security measures such as encryption systems owing to
their low power consumption [4]. Maintaining the secu-
rity of such systems is critical [5]. Symantec reported
nearly three billion cyberattacks in 2019, an increase of
300% from the previous year [7]. Attackers can exploit
vulnerabilities to breach privacy, alter and destroy data,
and gain unauthorized access [5]. The annual cost of cy-
berattacks is estimated at $10.5 trillion, and this number
is expected to increase in the coming years [2].

The rapid growth of the Internet of Things (IoT) has
led to the emergence of new security challenges [10].
These challenges raise concerns that must be resolved
and addressed to enhance and improve the security of
IoT environments [5]. Collaboration with various policy-
makers, researchers, and stakeholders is essential to
develop best practices, policies, regulations, and stan-
dards to enhance the security and reliability of IoT [5].
Cybersecurity is an integral part of information manage-
ment in the IoT environment [10]. The widespread pro-
liferation of IoT devices in homes, smart power grids,
and smart cars, along with the significant complexity of
communication protocols, poses a variety of threats [10],
especially those related to security and privacy, such as
device hacking and unauthorized access to data [11].

The Internet of Things aims to connect the physical
and digital worlds. The Internet of Things (IoT) has
enhanced the quality of users’ lives, providing them with
convenience, simplicity, and luxury [5].

Research contrition and Scope:
The contribution of this study is that it presents re-

search based on machine learning and deep learning
in the field of anomaly detection and attacks in IoT net-
works. This study aimed to analyze several recent stud-
ies. Sixty-nine research papers were selected to review
the literature related to machine learning and deep learn-
ing for anomaly detection in IoT in different domains
and attacks that may affect different layers of the IoT
architecture. These papers were collected from various

publications, including IEEE, Elsevier, Springer, MDPI,
and others, to ensure the inclusion of the latest infor-
mation. This paper also addresses the challenges and
future research paths for applying machine learning and
deep learning techniques to anomaly detection in the IoT
and various attacks.

This study relied on a methodology of reviewing re-
cent research surveys, where compiling research papers
from several peer-reviewed publications, including IEEE,
MDPI, Springer, Elsevier, and others, which were pub-
lished between 2018 and up to present. It focuses on
analyzing recent studies on anomaly detection using ma-
chine learning and deep learning algorithms and attacks
on different layers of the IoT architecture. To maintain the
integrity of the research, research papers based on both
machine learning and deep learning related to anomaly
detection in the IoT and attacks on the layers of the IoT
architecture were collected.

Each study was analyzed according to its field, ex-
perimental methods, datasets used, advantages and
challenges of the proposed frameworks, and the results
obtained. This study examined sixty-nine research pa-
pers to review the literature related to both machine learn-
ing and deep learning techniques and to compare the
results of different algorithms and attacks. There is still
room for future research in this field. The remainder of
this paper is organized as follows. Section 1 provides an
introduction to the field. Section 2 presents and reviews
related literature. Section 3 provides an overview of the
IoT, its architecture and layers. Section 4 explains the
security concerns associated with each layer, presents
some of its different aspects and discusses its security
and vulnerability. Section 5 describes the methodology
used in this study. Section 6 presents different IoT Do-
mains. Section 7 discusses the anomaly detection and
the algorithms used. Section 8 focuses on the open
challenges of IoT security attacks and potential areas.
Finally, Section 9 concludes the study conclusion and
future research with references.

2. RELATED WORK

Unmanned aerial vehicles (UAVs) are becoming increas-
ingly widespread and are used in various fields, including
agriculture, military, and commercial. They have become
crucial for individuals and organizations by facilitating and
improving the performance of various tasks with greater
ease and security. In this study [12], we conducted a com-
prehensive review of UAV intrusion detection methods,
classifying studies according to their objectives, datasets,
extracted features, and algorithms, with a focus on ma-
chine learning and deep learning approaches. This study
also highlights its main limitations. Detecting intrusions
in UAVs has recently received significant attention from
both academia and industry to address current threats
and to develop detection frameworks. Furthermore, this
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study provides background information, presents state-
of-the-art methods, proposes a taxonomy of detection
techniques, identifies key problems, and anticipates fu-
ture trends. However, it does not discuss the broader
integration of emerging technologies such as generative
artificial intelligence and quantum computing to enhance
UAV intrusion detection. It also recommends improve-
ments, such as developing shared datasets, enhancing
privacy, and improving performance [12]. Subsequent
studies have begun to explore these trends, particularly
in the broader context of IoT security, in which these
techniques are leveraged to enhance model robustness
and data protection.

This study [3] focuses on surveying advanced studies
on intrusion detection and prevention systems (IDS/IPS)
in the Internet of Things (IoT). It primarily examined ma-
chine learning and deep learning approaches used in
IDS and IPS, offering analyses and comparisons based
on feasibility, challenges, compatibility, and related is-
sues. The study also included a questionnaire sum-
marizing the advantages and disadvantages of various
approaches, and discussed the foundations of intrusion
detection systems across different categories, locations,
functions, and architectures.

Mapping techniques were employed along with miti-
gation methods to analyze the risk factors, and several
research issues and proposed solutions were identified.
Furthermore, this study introduced a hybrid framework
that integrates mapping-based risk analysis for effective
security modeling in intrusion detection and prevention.
In addition, it did not extensively discuss performance
metrics beyond accuracy, such as detection time and
resource consumption, or the potential integration of
emerging technologies, such as blockchain and genera-
tive artificial intelligence [3]. Subsequent research has
begun to explore these dimensions to enhance the op-
erational efficiency and adaptability within IoT security
systems.

In [5], the authors reviewed and compared recent
research papers based on machine learning and deep
learning to enhance Internet of Things (IoT) security. This
study aimed to identify the major security challenges and
threats affecting IoT applications and to examine the vul-
nerabilities inherent in IoT systems. It emphasizes the
important role of machine learning and deep learning
in addressing these risks, including cyberattacks and
data breaches. However, this study did not include a
comparative evaluation of traditional or hybrid security
approaches. It also highlights several research chal-
lenges and potential future directions for using machine
learning and deep learning methods in IoT security [5].
Subsequent studies have expanded on this work by an-
alyzing the integration of traditional, hybrid, machine
learning, and deep learning-based techniques to better
understand their advantages and practical applicability.

In [7], researchers provided a detailed review of deep-

learning-based intrusion detection systems (IDSs) for
identifying botnets in the Internet of Things (IoT). This
study examined several architectures, including convolu-
tional neural networks (CNNs), recurrent neural networks
(RNNs), and generative adversarial networks (GANs),
highlighting their ability to improve the detection accuracy,
identify abnormal behavior patterns, and extract high-
level features. Some studies reviewed in this study used
datasets such as CICIDS2017 and CSE-CIC-IDS2018
to evaluate models such as BoostedEnsML, which com-
bines different network traffic sources and simulates di-
verse attack scenarios to assess IDS performance. The
review also emphasized efforts to improve comparability
and robustness in IDS research and encourage collabo-
ration within the community.

While the study mainly focused on traditional botnet
attacks, it paid limited attention to emerging threats, such
as AI-driven or adversarial attacks that directly target
ML/DL-based systems [7]. Later studies started to exam-
ine these evolving attack types and their implications for
developing more resilient IoT security frameworks.

A smart grid is a modern energy grid that integrates
advanced communication technologies and the Internet
of Things (IoT) to provide sustainable and reliable elec-
tricity. However, this integration also increases exposure
to cyber threats, which can have severe operational and
financial impacts. In [13], the authors reviewed machine-
learning-based feature selection methods for detecting
cyberattacks in smart grids, providing a comprehensive
analysis of the system’s most significant vulnerabilities.
The study also discussed several approaches to intru-
sion detection, including signature-based, machine learn-
ing, anomaly detection, and rule-based methods. While
providing valuable insights into these approaches, little
attention has been paid to the legal and policy aspects
necessary to enhance cybersecurity in smart grids, such
as compliance standards and government regulations.
This paper also highlights emerging research directions
that incorporate artificial intelligence and blockchain tech-
nologies to enhance the resilience of smart grid infras-
tructures [13].

The authors presented [14] a review of AI tech-
niques, including machine learning and deep learning
approaches, in the context of the Industrial Internet of
Things (IIoT). The study discussed key IIoT applications,
such as real-time manufacturing, agriculture, and trans-
portation, and proposed an IIoT architecture that inte-
grates key components, such as smart sensors, indus-
trial sites, decision-making processes, and control cen-
ters, to enhance operational efficiency. This review also
covers a range of algorithms, including machine learn-
ing models such as k-nearest neighbors (kNN), Sup-
port Vector Machines (SVM), Naive Bayes (NB), Deci-
sion Trees (DT), Random Forests (RF), Artificial Neural
Networks (ANN), and Federated Learning (FL), as well
as deep learning models such as autoencoders (AE),
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Convolutional Neural Networks (CNN), Recurrent Neu-
ral Networks (RNN), Restricted Boltzmann Machines
(RBM), Generative Adversarial Networks (GAN), Deep
Reinforcement Learning (DRL), Transformers, and Large
Language Models (LLM). Although the study mentioned
some security challenges, it paid little attention to a de-
tailed discussion of modern data protection techniques
applied in IIoT environments, such as advanced encryp-
tion methods, access control mechanisms, or blockchain-
based frameworks [14]. Subsequent research has begun
to explore these aspects to enhance the reliability and
security of IIoT infrastructure.

Using IoT devices and machine-learning algorithms
in [15], the authors proposed a methodology for mapping
anomaly detection in industrial machinery. This study
also reviewed 84 research papers published between
2016 and 2023, providing an overview of anomaly detec-
tion research and summarizing recent trends in the field,
ensuring that it remains up-to-date and consistent with
the latest developments. Although this study primarily
focused on detection techniques, it paid limited atten-
tion to data security issues in IoT systems and did not
include a comparison of existing anomaly detection tools
or platforms [15]. Subsequent work has begun to ex-
amine these aspects more closely, exploring the relative
strengths and applicability of different anomaly detection
solutions in IIoT environments.

The authors of [16] provided an overview of the Medi-
cal Internet of Things (MIoT) and covered the main pri-
vacy and security issues, such as the function of IoT
devices and machine learning, as well as the monitor-
ing layers of perception, network, application, and cloud.
The study also examined a number of cyberattack risks
to MIoT, such as those pertaining to Bluetooth, ZigBee,
Wi-Fi 6, and the new 5G technology known as Narrow-
band Internet of Things (NB-IoT). Robust authentication
methods are necessary to secure the MIoT environment,
and machine-learning and deep-learning approaches
are essential in this respect. The study did not provide
actual case studies from hospitals or healthcare systems;
instead, it relied on theoretical examples and simulation-
based models such as COOJA. Real-world case studies
from hospitals or healthcare systems. Additionally, the
study covers cybersecurity issues in IoMT from the per-
spective of the European Union Agency for Cybersecurity
(ENISA), referring to the 2030 cybersecurity threat land-
scape [16].

The authors of [17] examined cybersecurity concerns
at the network, application, perception, and support lay-
ers of the Internet of Things (IoT). This study addressed
the types of DDoS attacks, their impact, and mitigation
techniques. To mitigate these effects, this study also
compared different models for detecting and preventing
intrusions, focusing on detection systems. The study
presented a dataset-based classification of anomaly de-
tection methods as well as machine learning and deep

learning methods for malware detection and data pro-
cessing. Although the study addressed security in gen-
eral, it did not address specific issues such as protecting
physical devices from theft or tampering or how to pro-
tect data privacy in sensitive applications such as smart
health [17].

The authors of [18] examined several Internet of
Things (IoT) security risks and vulnerabilities, providing
a comprehensive analysis of the application of machine
learning and deep learning methods in IoT security. This
study categorized these methods into a data-driven list,
comparing their advantages, disadvantages, and uses in
relation to the Internet of Things (IoT). It also covers how
blockchain technology can be combined with deep learn-
ing and machine learning to improve IoT security. This
study highlighted various IoT security issues, including
learning methods and security breaches in networked en-
vironments. It also recommends future research avenues
for enhancing IoT security by using state-of-the-art tech-
nologies. Although the review provides a comprehensive
theoretical analysis, it omits case studies and experimen-
tal results from actual IoT systems, which could have
provided useful information on how machine learning
and deep learning techniques can be applied to IoT se-
curity [18].

In [19], the authors reviewed the literature on anomaly
detection using machine learning and deep learning tech-
niques in the IoT infrastructure, focusing on anomaly and
intrusion detection in IoT systems. This study presents a
series of recent studies on the use of machine learning
and deep learning techniques for anomaly detection. It
also discusses the need to improve existing systems to
make them more scalable and testable. It also addresses
challenges, such as identifying intrusion sites and intru-
sions in IoT systems. A comprehensive review of the
latest relevant work is provided, and all the studies are
summarized in a single table. However, the study did not
provide a detailed discussion of specific attack-targeting
devices within the IoT architecture [19].

Unlike the aforementioned studies, this research of-
fers a unique contribution to this field, comprehensively
covering three dimensions of IoT research: machine
learning, deep learning methods, and the challenges
and attacks associated with each layer of the IoT archi-
tecture. Previous research papers have provided a com-
prehensive review of various machine learning and deep
learning techniques for anomaly detection in different
domains. Although each study discusses the potential
of these methods, empirical evidence and case studies
demonstrating the effectiveness of machine learning and
deep learning in enhancing and improving the security
of IoT devices and attacks that may affect each layer of
the IoT architecture have not been extensively discussed
in the literature. By integrating these aspects, this sur-
vey paves the way for the exploration of new research
avenues. This study includes a review of the latest arti-
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cles in the field, covering publications up to the present.
This study is based on an inference of the latest trends
and developments in the IoT space. Therefore, this work
provides an updated overview of the latest research,
including recent peer-reviewed articles, leveraging ma-
chine learning and deep learning techniques for anomaly
detection in diverse IoT domains, such as healthcare,
industry, and transportation. It also provides an updated
overview of various attacks on IoT layers that can nega-
tively impact the security of the IoT environment. Table
1 summarizes and lists relevant studies on these tech-
niques, identifying the algorithms used, datasets, results,
features, and challenges.

3. INTERNET OF THINGS OVERVIEW

In the modern era, the Internet of Things (IoT) has devel-
oped rapidly, revolutionizing modern technology through
the widespread interconnection of devices, networks,
and services [20]. IoT is a network of connected physical
devices, software, vehicles, home appliances [21], and
motors that can exchange information over communica-
tion networks such as the Internet [20]. IoT devices con-
nected by sensors are used to connect homes, schools,
universities, hospitals, and people [22]. These objects
are capable of networking to collect and exchange data
efficiently for control and management [21]. IoT is also
defined as an object that exchanges and shares informa-
tion with other objects or platforms over the Internet [22].
IoT is considered a network infrastructure [7]. The num-
ber of connected devices has reached 17 billion, making
IoT an essential component of an interconnected society
[23]. IoT consists of a set of basic elements: identifica-
tion, sensing, communications, services, and semantics.
With the increasing applications of IoT, devices could
become less energy intensive, lower cost, and smaller
[22].

Figure 1. IOT component

IoT is also a network for exchanging data between
various devices [15], and large amounts of data are trans-
mitted over the network using the Internet as a basis
for communication and minimal human intervention [3],
which is primarily responsible for consumer requirements,
as well as interactions between machines and users, and
the relationship between the client and the server [15].

Through IoT systems, companies collect real-time
data to improve operational efficiency, stimulate innova-
tion, and increase decision-making capacity. The IoT,

coupled with its computing capabilities, facilitates com-
munication between physical objects and digital systems
[24]. IoT is also designed to facilitate communication
between real and digital sciences (also called digital
transformation or cyber-physical systems) [22]. The use
of IoT is increasing in most and various areas of life, as il-
lustrated in Figure 2, such as homes, cars, hospitals, the
agricultural sector, schools, and cities [22]. This leads
to radical changes in everyday objects [25] and several
industries, including manufacturing, transportation, agri-
culture, healthcare, and the military [24].

Figure 2. IOT Application

The IoT aims to improve human life, increase the
availability of different applications and services [22], and
provide efficiency and convenience through automation
[20, 26]. Smart devices communicate with each other to
perform various tasks [26]. However, they face numerous
difficulties and security threats [20].

Radio-frequency identification (RFID) technology has
been widely used since the 1980s in several industries
such as supply chain management, retail, logistics, and
pharmaceutical manufacturing. Wireless sensor net-
works (WSNs), which use networked smart sensors to
collect data and monitor the surrounding environment,
constitute another core IoT technology. The applica-
tions of these networks are numerous and include traffic
monitoring, industrial control, healthcare monitoring, and
environmental monitoring. Advances in RFID and WSN
technology have significantly contributed to the devel-
opment of IoT. Other technologies also support the IoT,
including cloud computing, social media, smartphones,
and barcodes [7].

The rapid growth of IoT devices has raised numerous
security concerns such as unauthorized access, hacks,
and vulnerabilities [27].

I. Architecture

The Internet of Things (IoT) environment consists of
an ever-increasing number of smart devices and sen-
sors connected and interconnected wirelessly and au-
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tonomously, anytime, anywhere [28] via a popular Inter-
net Protocol called Internet Protocol (IP) [29]. This in-
crease leads to increased data traffic and the processing
and storage of large amounts of data [30]. Architecture
is defined as the framework by which the physical com-
ponents of the network, their organization, and opera-
tional procedures are defined, organized, and configured.
Each layer of the IoT has associated security issues and
vulnerabilities [28].

The IoT includes many heterogeneous and limited
devices [4]. Consequently, it faces numerous challenges
related to quality of service, privacy, and security [30].

Internet architecture consists of multiple layers that
work together to perform tasks and achieve goals. There
is no fixed standard for IoT architecture and researchers,
authors, and practitioners have proposed various archi-
tectural models. Researchers developed five architec-
tural models that share similar components. An IoT sys-
tem consists of three layers: (1) the physical perception
layer, (2) the network layer, and (3) the application layer.
Reference [31] described this phenomenon. Other re-
searchers have reported that an IoT technology stack
consists of three basic layers: (1) the device layer, (2)
the communication layer, and (3) the IoT cloud layer [32].

IoT consists of three layers: (1) device layer, (2) com-
munication layer, and (3) application layer, as mentioned
in [7]. The IoT architecture consists of three layers: edge
perception, network, and application, as stated in [5].
In other research, researchers have analyzed an addi-
tional support layer located between the application layer
and the network layer, which is included in the latest
IoT architecture, consisting of fog computing and cloud
computing [29]. While IoT has been classified into three-,
four-, five-, or seven-layer architectures [1], in general,
the basic component of IoT architecture consists of four
layers. These four layers are the perception, network,
middleware, and application layers, as stated in [19].

The network layer connects the IoT system to a per-
ception layer. The perception layer consists of physi-
cal devices, such as actuators and sensors, that pro-
cess data. The middleware layer in this layer processes,
stores, and manages data collected from the perception
layer. The application layer contains user applications
that store the processed data. Some studies have shown
that other layers are components of the IoT architecture,
such as the management, environment, business, and
security layers [19].

The International Telecommunication Union (ITU) con-
siders IoT architecture to consist of five layers: applica-
tion, sensing, networking, access, and middleware; it
also adds an alternative architecture for the IoT, where
the model consists of three layers: the application layer,
the network layer, and the sensor layer. The architec-
ture of IoT in another model consists of a network layer,
perception layer, and application or service layer [7].

Each of the proposed IoT architectures fails to cover

all the features of the IoT and presents several common
drawbacks, summarized as follows.

a. Distributedness: IoT models are developed in a
distributed environment, and data are collected from
a variety of sources and can then be processed by
distinct smart entities in a distributed process.

b. Interoperability: Systems and protocols must be
designed to allow smart devices to exchange data in
balanced ways to achieve common goals.

c. Scalability: Systems and applications operating in
IoT environments must be able to process and man-
age massive amounts of data owing to the expansion
and proliferation of devices in IoT environments.

d. Resource Scarcity: Computing units and power are
extremely scarce resources.

e. Security: Devices can be taken over by an unknown
external device, which can leave users feeling help-
less and intimidated. [30]

To overcome these problems, similar functions, tech-
nologies, and services are consolidated at each layer,
facilitating the development and improvement of each
layer [30].

This study focuses on a specific model, the three-
layer architecture (network, application, and perception),
excluding other architecture models. Each layer of the
IoT architecture is designed to perform a specific task
or function. Each layer is exposed to various security
issues and attacks, which are addressed in section 4

a. Application layer
The application architecture is a structure in which the
data collected from IoT devices are processed [7]. In
IoT architecture, the application layer is located at the
top level and provides user interfaces [16]. This layer
includes smart applications, such as smart homes,
healthcare, and smart cars. This layer interacts with
end users; therefore, maintaining data privacy and
confidentiality is critical, as it may be exposed to seri-
ous security concerns [5]. Application layer protocols
define the application interface with lower-layer pro-
tocols for sending data over a network. Application
layer protocols facilitate interprocess communication
using ports. Some application layer protocols include
HTTP, CoAP, WebSocket, MQTT, XMPP, DDS, and
AMQP [33] Security concerns that this layer may be
exposed to, including eavesdropping through spying
on traffic data, data breaches [17], denial of service,
injection attacks, manipulation, scripting attacks, and
others [5].

b. Network layer
Network architecture is a structure that connects and
shares information between interconnected devices
[7]. The network layer acts as the central nervous sys-
tem (CNS) of the entire network. Its primary purpose
is to route and transmit data to various IoT hubs and
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devices over the internet [33]. It also collects data
from various IT infrastructure [7]. In this layer, data
are received from the perception layer and transmitted
to the processing systems in the middleware layer [5].
The network ensures efficient and seamless commu-
nication between the devices. The network manages
data routing using MQTT, IPv6, and CoAP protocols.
Network topology management and system perfor-
mance can also be improved through protocols such
as RPL, which optimizes resources [34] Cloud com-
puting platforms, routing, switching, internet gateways,
and other devices in this area operate using technolo-
gies such as Bluetooth, ZigBee, Wi-Fi, LTE, 3G, and
more [33]. This layer is highly vulnerable to attacks,
including a range of Internet of Things (IoT) devices,
such as denial-of-service attacks, phishing attacks,
wormhole attacks, and deep holes. Data are more
vulnerable during transmission because of their im-
portance and ease with which they can be hacked
[17].

c. Perception layer
The perception layer, also called the "physical layer"
or the "sensing layer," [16] is a group of intercon-
nected devices that enable communication and re-
mote control [7]. It establishes a physical connection
with objects and transmits their data to a receiver
or a gateway [16]. The main objective of this layer
is to obtain and collect information from the environ-
ment using sensors and actuators and transmit it to
the network layer for further processing [33]. It was
also designed to perform feature-based identification
and program smart devices to perform mechanical
functions, reduce human interaction, and enhance
scalability [35]. The role of the IoT in healthcare,
which connects stakeholders such as doctors, nurses,
patients, medical devices, and pharmacists, is consid-
ered part of the perception layer [16]. The security of
this layer is measured in terms of complexity, energy
efficiency, speed, channel state information (CSI), bit
error rate (BER), SINR, maximum error coefficient
(MSE), and more, for legitimate and illegitimate users
[36].
In summary, the network layer connects the IoT sys-
tem to the perception layer. The perception layer
consists of physical devices, such as actuators and
sensors, that process data. The application layer con-
tains user applications that store the processed data.
Some studies have also shown that other layers are
components of the IoT architecture, such as the man-
agement, environment, business, and security layers
[19].

4. IOT SECURITY ATTACKS CLASSIFI-
CATION
The increasing scope of the IoT exposes it to various
types of vulnerabilities and security threats. Because
the IoT is based on the Internet, Internet security
issues arise. As previously mentioned, IoT consists
of three main layers: the perception layer, network
layer, and application layer, each of which presents
its own unique security issues and threats [28]. This
issue is addressed in this section.
A. Application Layer Attacks
The primary objective of this layer is to intelligently
and accurately analyze and process the information
obtained from the network layer[28]. This layer is
responsible for managing applications based on the
information processed in the middleware layer. These
devices are simple, lightweight, and low-power, mak-
ing them vulnerable to attack [37]. This layer includes
a range of applications, including smart mail, smart
glasses, logistics, retail, smart independent living,
safety and monitoring, and resource and energy man-
agement [28, 35]. These attacks may replace soft-
ware code with malicious code, disrupt applications,
and render them more vulnerable to hacking. Com-
mon threats in this layer include malicious code at-
tacks, spear-phishing attacks, software vulnerabilities
(inability to receive security patches), and hacking
of smart meters/grids [37]. The Internet of Things
(IoT) has become easier to implement because of
its ease of use and accessibility through a range of
smart portable devices [35]. Figure 3 illustrates the
primary security attacks on IoT applications [16].

Figure 3. security attack in the application layer

Here, we summarize some Application-Layer Security
Attacks:

1- Malicious Code Injection:
In this type of attack, an attacker uses certain
programs and techniques to inject any type of ma-
licious code into the system to steal data from the
user [28]. Attackers can include malicious SQL
commands in web form, page requests, or URLs,
resulting in unwanted database access[16].

2- Sniffing Attack:
An attacker inserts a sniffing application into the
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system, allowing it to obtain network information,
which in turn leads to system corruption [28]. It
provides integrated security by combining an ap-
plication layer and middleware [33].

3- Denial-of-Service (DoS) Attack:
Denial-of-service (DoS) attacks have become in-
creasingly complex and challenging, and are being
carried out to breach defense systems [28] through
a group of compromised computers operating from
multiple locations [16]. The main goal of this at-
tack is to overwhelm the server, website, or online
service and render it unavailable [16]. These at-
tacks trick the victim into believing that the attack is
occurring elsewhere, exposing personal and sen-
sitive user data to attackers and leading to service
unavailability [28, 36].

4- spear-phishing attack:
In this attack, the victim is lured into an email open-
ing, which allows the attacker to access the victim’s
data. The attacker then pretends to retrieve sensi-
tive information, [28] which is a common threat to
the application layer [37].

5- Phishing Attack:
Owing to the rapid spread of digital services and
internet access, phishing attacks have become a
significant threat to cybersecurity [38]. This threat
primarily affects the application layer [34]. The
attacker uses malicious email and a phishing web-
site [36], where the attacker impersonates the le-
gitimate user by logging into the victim’s email ac-
count [36] and pretends to be unaware of personal
and sensitive information, such as passwords and
credit card details, [34] to obtain the victim’s cre-
dentials and use them for criminal purposes and
corrupt data [33]. Attackers can use compromised
devices such as smartphones, home appliances,
and smart cars to launch these attacks at the appli-
cation layer [16]. For example, Irish cyberattacks
on the Health and Safety Executive (HSE Conti)
have escalated [16].

6- Cross-site Scripting (XSS) Attacks:
In this type of attack, an attacker injects malicious
code into legitimate and trusted websites, com-
promising the security of users, the system, and
data. [16, 34] This technique is used in the IoT
to exploit the web interfaces of connected devices
[34], which allows an attacker to change the con-
tent of an application [16]. Because the browser is
unable to distinguish between malicious and legit-
imate codes, the infected code is executed, thus
enabling them to access session IDs, cookies, or
other confidential information. Furthermore, at-
tackers can control the device and send users to
other malicious websites, or cause the device to
malfunction or be damaged [16].

7- Malicious scripts:

These scripts infect an application and deliberately
harm an IoT system. An attacker sends a mali-
cious script to a user when they request a service
from the Internet, because all IoT applications rely
on the Internet. Examples of these scripts include
ActiveX and Java. An attacker can cause a system
crash by accessing confidential data [36].

8- XMPPilot Attack:
This attack was launched using the XMPPilot
command-line tool on the XMPP connection estab-
lished between the client and server. This attack
allows the attacker to monitor communications be-
cause it prevents encryption on the client-side [36].

9- Software vulnerabilities:
They are considered a major threat because they
are weaknesses in software that attackers exploit
for malicious purposes. Owing to a lack of secu-
rity standards, software engineers and developers
do not attach much importance to writing secure
software. This, in turn, enables attackers to launch
attacks such as buffer overflow [36].

10- Buffer Overflow Attacks:
Some programs suffer from memory problems
previously allocated to a particular program [36].
Buffers hold data as they are transferred from one
location to another; if the buffer capacity is ex-
ceeded, the data exceeds the buffer capacity [16].
An attacker writes a piece of code that is larger
than the memory previously allocated to a par-
ticular program, thus modifying the information
stored in other memory locations, executing ma-
licious software that redirects the stack pointer,
disrupts the control flow, and crashes the applica-
tion. Memory-access errors or incorrect results
can occur [36]. The goal of this attack is to en-
able attackers to exploit memory overwriting vul-
nerabilities that negatively impact execution paths,
leak confidential information, and corrupt numer-
ous files. Older systems are the most vulnerable to
this type of attack because of their limited memory
[16].

11- Data aggregation distortion:
The attacker alters the data collected from multi-
ple nodes and sends it to the base station, which
then gathers incorrect information regarding the
surrounding environment [36].

12- Sensitive Data Permission/Manipulation:
This attack exploits vulnerabilities in IoT design,
particularly in terms of permissions and authoriza-
tions for controlling applications. The primary goal
is to communicate between smart applications and
smart devices. Sensitive data are sent to the appli-
cation that is being monitored by the smart device.
This type of attack poses significant risks, espe-
cially in terms of user privacy [36].

13- Clock Skewing:
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In this type, the attacker generates incorrect time
information and desyncs IoT devices, which in
turn causes the victim’s devices to desync with
aggregation nodes [36].

14- Malware:
Malware is used to commit cybercrime using IoT
applications, and recently, this attack has occurred
when an attacker attempts to access IoT devices
using a default SSH or Telnet account [39]. Many
types of malware have been released to attack
IoT devices, including spyware, rootkits, and hard-
ware. Malware in national security (such as the
Red October virus), finance (BaFin), social (trans-
portation, telecommunications, energy, water), and
economic (manufacturing, fintech) sectors nega-
tively impacts these sectors and human lives [16].
The most common example of malware is the Tro-
jan horse attack, which refers to the use of mali-
cious software hidden within secure and legitimate
applications to compromise security. The attack
affects the application layer. To improve the se-
curity of IoT applications, strong authentication,
security practices, data encryption, and security
mechanisms must be implemented [34].

15- Data Leakage:
An attacker aims to access sensitive and confi-
dential data by exploiting the vulnerabilities in IoT
services and applications [36].

B. Network Layer Attacks:
This layer also contains all network devices, such as
routers, switches, bridges, and firewalls, that work
with communication and routing protocols, such as
ZigBee, Infrared, Wi-Fi, 3G, 4G, and 5G [30]. UMTS,
WiMAX, Satellite and RFID [28]. At the network layer,
security is provided by IP Security Protocols (IPSec),
which provide complete security with integrity, authen-
tication, replay protection, and confidentiality. Multiple
intrusion detection systems can detect intruders and
malicious activity in a network. Firewalls are critical for
preventing unauthorized access to networks. 6LoW-
PAN IoT networks are vulnerable to many attacks,
both from within the network and from the Internet
[40]. The presence of any malicious node or behavior
may disrupt the normal functioning of the network,
triggering attacks, such as hello flooding, black holes,
selective rerouting, recursion attacks, and wormholes
[41]. Figure 4 illustrates basic security attacks at the
IoT network layer. [16].
Here, we summarize some Network-Layer Security
Attacks:

1- Dos/DDoS Attacks:
This is one of the most common attacks, and is a
type of cyberattack that disrupts a system, network,
or application. When an attack originates from mul-
tiple compromised nodes, it is called DDoS [16]. In

Figure 4. security attacks at the IoT network layer

the Internet of Things (IoT), a DDoS attack occurs
when an attacker adds a massive amount of invalid
data to the network, rendering it unable to process
valid data. [34] The network is flooded with mali-
cious and useless code messages, which in turn
renders the targeted users unavailable [37], which
prevents them from accessing websites, emails,
network services, or data, making the targeted net-
works extremely slow, often leading to their shut-
down and denial of service to authorized users
[37]. Furthermore, DDoS attacks can be used as
a means for other types of attacks such as data
theft or malware installation [34]. In these attacks,
a series of data packets is continuously sent to the
targeted IoT devices via an IP address, rendering
the targeted device unusable after a period of in-
activity. This includes many attacks such as SYN
flooding, dead-end testing, and UDP flooding [36].
To counter these attacks, intrusion detection sys-
tems and routing tables have been used. Attacks
based on the network layer affect smart buildings,
e-health, and smart-city applications [42]. Owing
to the small size of IoT node batteries, an attacker
drains the battery to shut down the node, prevent-
ing it from functioning and reporting emergencies.
Keeping the nodes awake and preventing them
from entering sleep mode could trigger a DoS at-
tack [36]. Furthermore, one of the main threats is
leakage of unencrypted user information [36].
These attacks have become more sophisticated
and are a method for executing attacks to breach
defense systems, placing the unencrypted per-
sonal data of the user at the hacker’s disposal
[28].

2- Routing Attacks:
This type of attack targets routing protocols used
in IoT systems [36]. IPv6 is used throughout the
IoT, such as in wireless sensor networks, which
are more vulnerable to routing attacks and im-
personation [36]. Altered routing information can
lead to packet drops, routing loops, increased
latency, misdirected rerouting, or network frag-
mentation [36]. An attacker uses this attack to
reroute, impersonate, or send misleading mes-
sages to the system. There are many routing
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attacks such as wormholes, blackholes, routing
information changes, Sybil attacks, grayholes, and
hello floods. These attacks are carried out at the
ISP, and ICT providers must be NIS2-D compliant
[16].

3- SPOOFING ATTACKS:
Spoofing attacks are used to spread malicious in-
formation in the IoT systems. Spoofing includes
several types such as email, frame spoofing, and
URL spoofing. IP or MAC address spoofing was
the most common type [36] of spoofing [16]. An at-
tacker impersonates the IP address of a device or
node to access the IoT system, sending suspicious
data that appears to originate from a legitimate and
trusted device [36]. The MAC address is used in
IoT to authenticate wireless networks at the data
link layer. An attacker spoofs the MAC addresses
of legitimate users to gain unauthorized access
to the network, which in turn negatively affects
the confidentiality and integrity of the data [16].
In Radio Frequency Identification (RFID) technol-
ogy, an attacker uses fake information for a legiti-
mate RFID tag and disseminates data that appear
to have originated from an authentic RFID tag to
carry out malicious activity or behavior. They also
used RFID information to transmit their data as if
they were legitimate owners, allowing them to gain
access to the system [36].

4- Traffic Analysis:
The wireless media features of IoT rely on radio-
frequency identification (RFID) technology [36].
The network traffic was analyzed to detect and
monitor anomalies and abnormal behavior [16].
An attacker uses a spy tool to analyze traffic and
obtain confidential information [16]. An abnormally
high traffic volume also indicates traffic analysis
or a denial-of-service attack [36]. These types of
analyses include vulnerability scanning, network
monitoring, and port scanning [36]. Criminals mon-
itor traffic to obtain passwords by analyzing pack-
ets during each keystroke and the time between
them [36]. The greater the amount of traffic, the
greater the possibility of extracting data from the
obtained packets [36].

5- Sybil Attacks:
In this attack, legitimate nodes are impersonated
using malware to redirect data traffic to malicious
nodes [36] within the network and to deceive and
manipulate the behavior of the system for their
benefit [34]. In this attack, malicious nodes pos-
sess multiple identities, potentially outnumbering
legitimate nodes in the network [15]. Owing to the
different identities, the compromised device sends
fake data to neighboring devices [36]. This attack
impacts data integrity and resource allocation ow-
ing to its ability to control information flow within

the network [15].
6- Sinkhole Attacks:

In this attack, false metrics (such as optimal band-
width, minimum delay, and shortest path) are sent
from a compromised IoT node or device to neigh-
boring nodes, allowing them to use this node as
a routing node along their path [36]. The attacker
redirects or ignores the traffic, preventing the base
station from receiving the entire data transmission
and reducing network robustness and draining en-
ergy [16]. Through these attacks, an attacker can
eavesdrop on communications, intercept and ob-
tain sensitive information, or manipulate data and
collect confidential data, such as login credentials
and financial information. They can also modify
data or inject malicious content [34].
This type of attack leads to unauthorized actions
and [34]. Affects the integrity, availability, and relia-
bility of the network [16].

7- Man-in-the-Middle (MITM) Attacks:
A cyberattack involves secretly intercepting the
communication between two devices [16, 34]. The
attacker gains unauthorized access to eavesdrops,
manipulates data, or collects sensitive information
[34]. The main goal of this attack is to steal users’
confidential information or to modify messages or
data [37]. Attackers exploit existing or new vulner-
abilities in IoT systems to perform such attacks.
Examples include device malfunction and temper-
ature sensor reading, which enables hackers to
steal sensitive information [16].

8- Blackhole Attack:
This attack involves inserting malicious nodes into
the network and providing false routing information
to their neighbors, indicating that they have the
shortest path to the interface where the malicious
node processes or drops the packets. The attacker
captures packets at one location in the network
and sends them to another [12].

9- Selective forwarding:
In this type of attack, the attacker drops some
or all packets destined for IoT nodes and delays
their routing. They can also disrupt communication
between devices by selectively routing packets
[36].

10- Packet Replay Attack: In this type of attack,
the attacker retransmits and replays previously
received packets to a group of nodes in the IoT
system or the entire network [36]. An attacker
copies a key or part of the messages exchanged
between two parties and steals the information.
The authenticated information is then sent mali-
ciously to the recipient for malicious purposes. The
authenticated message is sent repeatedly and is
considered legitimate, meeting the attacker’s re-
quirements and goals [37]. This, in turn, degrades
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the system owing to the consumption of resources,
such as memory, bandwidth, and power. This is
considered a type of phishing attack [36].

11- Wormhole Attacks:
In this type of attack, two malicious devices are
placed in separate locations within the same ge-
ographic area of the IoT system with a private,
one-hop link between them. IoT devices select
these devices or nodes as the next hop in their
routing paths. Once data flows through the tunnel
between two malicious nodes, an attacker can de-
lay or drop the data, which is very dangerous for
mission-critical applications. This attack is per-
formed either by compromising the IoT device,
known as an out-of-band wormhole, or by in-band
wormholes using a high-gain directional antenna
[36].

12- RFID unauthorized access
This type of attack arises owing to the lack of an
authentication process for RFID tags, easy acces-
sibility, and easy manipulation. An attacker can
easily modify or delete information contained in
the tag [36].

13- Sniffing attack:
In this attack, the attacker uses specific applica-
tions, programs, or devices to capture the network
traffic and analyze it to carry out a real attack [36].

14- Malicious code injection:
In this type of attack, an attacker takes over a work-
ing node and injects it with malicious code to gain
access to and control over the network. This often
leads to network shutdown [37]. The network layer
plays a significant role in the application layer. Ar-
tificial neural networks (ANNs) are used to detect
IP-based intrusions in IoT devices [42].

C. Perception layer Attacks:
The function of this layer is to perceive and collect
information using devices such as pressure sensors,
temperature sensors, and Radio Frequency Identifi-
cation (RFID) tags. These challenges arise due to
the presence of IoT devices in an open, unprotected
environment, as well as the limited resources of IoT
nodes and devices. These challenges include physi-
cal damage and tampering with IoT devices. Attacks
in this layer focus on falsification of information [35,
36].
This layer is exposed to significant security risks, as
shown in Figure 5 [16].
Here, we summarize some Network-Layer Security
Attacks:

1- Eavesdropping:
An attacker secretly intercepts private communica-
tions (wireless communication channels) between
sensors in order to obtain confidential informa-
tion [34]. Exchange between devices or radio fre-

Figure 5. Security attack in the perception layer

quency identification (RFID) tags and readers [16].
This attack is considered passive because the at-
tacker does nothing but eavesdrop [36]. Eaves-
dropping attacks may have other malicious intent,
such as capturing biometric and genomic data for
personal gain or using personally identifiable infor-
mation/genetic data for espionage. These attacks
were successful in the past. [16]. Once the RF
signal is interfered with by noise, communication
between nodes becomes difficult, which in turn
disrupts the network and leads to denial of service
[36].

2- Node Capture Attacks:
In this type of attack, an attacker can gain access
to a node or device within an IoT system, seize
its control, and take it over. This attack involves
completely replacing a node or manipulating the
hardware components of the targeted node. The
attacker can also copy information to malicious
nodes that connect to the network or IoT system
as authorized nodes and perform malicious actions
[34]. and reconfigure or extract the encryption in-
formation. This is because IoT nodes operate in an
unprotected external environment, which makes
them more vulnerable to these attacks [36].

3- Replay attacks:
In this type of attack, an attacker hijacks network
traffic and causes a malicious node or device to
gain the trust of other nodes, pretending to be the
original sender using legitimate identification infor-
mation previously communicated with the destina-
tion node or device. These attacks are launched
through authentication processes to delegate the
integrity of the certificates [34, 36].

4- Physical attacks:
These attacks focus on the perception or physical
layers of the IoT architecture [16]. The attacker
accesses or modifies information from the tag for
forgery and sabotage [36]. To attack this layer,
proximity to the network infrastructure and unau-
thorized access are required to execute the attack
[16]. These tags include circuit tampering, probe
attacks, clock tampering, and material removal
tags [36].

5- Node jamming attack:
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An attacker sends jamming signals through the
IoT wireless signaling channel, thus occupying
the transmission medium and causing interference
[36]. This causes energy consumption, leading
to rapid resource depletion [36], which ultimately
leads to a service outage and complete shutdown
[16]. This ultimately leads to a denial of service
(DoS) attack on an IoT node. Jamming is a com-
mon type of attack in this layer. This type of attack
can be catastrophic, especially in healthcare, as
it can disrupt ongoing surgeries and medical diag-
noses, thereby impacting human lives [16].

6- Hardware Trojans:
An attacker accesses the data and programs in-
stalled in an integrated circuit (IC). The attacker
alters the design of these circuits during or before
production to add hardware trojans. To activate
this mechanism, an attacker can create a specific
operating system. Hardware Trojan attacks include
both external and internally enabled attacks [36].

7- Social engineering:
In this type of attack, an attacker manipulates the
IoT users to perform specific actions. The attacker
must then interact with the IoT users to perform a
particular action or obtain related information [36].

8- Injection attacks:
These attacks involve injecting malicious code and
modifying the software of the IoT devices. They
provide attackers with complete control and ac-
cess to IoT systems [36]. These attacks can
be devastating to the infrastructure, as a mali-
cious node can spread across the entire network,
infecting it and draining network resources [16,
36], causing complete operational damage [16].
Viruses can also be injected into the nodes [36].

9- Denial of Service (DoS) Attacks:
The Internet of Things (IoT) is vulnerable to this
type of attack owing to its limited resources such
as batteries, power, memory, and processing ca-
pabilities. Owing to its small size, an attacker can
drain the battery to shut down nodes, which has
dire consequences in emergencies where a node
is unable to operate and report an emergency.
In addition, a DoS attack can cause a denial of
service attack by preventing nodes from sleeping,
keeping them awake, and preventing them from
entering the sleep mode. In DoS attacks against
RFID tags, the user cannot read the tags because
of interference with the wireless communication
channel, rendering them unavailable [36].

10- Replication/duplication of a node:
In this type of attack, malicious nodes that appear
authentic are embedded in the system by dupli-
cating information from the original nodes. This
attack uses duplicate nodes to intercept packets,
reroute data, or access sensitive information such

as shared encryption keys [36].
11- Camouflage/Corrupted/Malicious Node Attack:

In this attack, legitimate nodes are attacked or ma-
licious and fraudulent nodes are introduced to hide
at the edge. These nodes are used to send and
reroute packets and perform trac analysis. The
attacker aims to gain access to the system, other
nodes, network, and their connections using ma-
licious and corrupted nodes. This can lead to a
network shutdown [36].

12- False data injection attacks
In this type of attack, an attacker injects information
to replace the correct information initially collected
from the IoT device. The attacker then sends the
false information to the target [36].

13- Side Channel Attacks:
In this attack, the attacker aims to obtain the en-
cryption key by predicting it through the plaintext
or ciphertext of the communication. Some tech-
niques have been applied to obtain the encryp-
tion key, such as timing techniques, which analyze
the time spent in the encryption process and then
predict the encryption key. A side-channel attack
is launched against an RFID tag, where the at-
tacker extracts information by attacking wireless
communications between the parties. In a non-
network-side channel attack, private information
about the nodes is provided, enabling continuous
transmission of electromagnetic waves [36].

14- RFID Cloning:
In this type of attack, the attacker deceives the
reader using duplicate tags that mimic the original
tag to gain unauthorized access to information [16].
The reader cannot distinguish between the original
RFID tag and compromised RFID tag [36]. This
includes various methods, such as RFID cloning
and tag cloning. The goal of these attacks is to ob-
fuscate and confuse the reader, giving the attacker
access to sensitive information via RFID spoofing
[36]. This compromises the integrity of the system
and increases the risk of biometric intrusion [16].

15- Interference:
In this type of attack, network communication is
disrupted by interrupting traffic and broadcasting
radio waves to spread misinformation and cause
panic [16].

16- Tampering:
In this type of attack, the memory of a node is ma-
nipulated and its functions are altered. An attacker
may manipulate a device by shutting it down, start-
ing it up, restarting it, tampering with data, or steal-
ing sensitive information. Individuals can suffer
severe consequences if their personal information
is misused. Because of the misuse of genera-
tive AI, adversaries repeatedly plan and execute
these attacks. Misuse of an individual’s personal
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information can have severe consequences [16].

5. METHODOLOGY
The research was conducted from 2018 to include
early access publications to obtain the most recently
published studies. The search included four ma-
jor academic databases: IEEE Xplore (44 studies),
Springer (10 studies), MDPI (seven studies), Sci-
enceDirect (Elsevier) (two studies), River Publishers
(1study) and Sana’a University Journal of Applied
Sciences and Technology (five studies).
The search strategy used the following keywords:

- In the technical field: - "Internet of Things,” "IoT,”
"IoT layers,” "Industrial IoT,” "IIoT,” "Smart City,”
"Internet of Medical Things,” "IoMT,” "Internet of
Vehicles.”

- In the field of security: "Security,” "Intrusion
Detection,” "Intrusion Detection System (IDS),”
"Anomaly Detection,” "Cyber Attacks,” "Threats,”
"Botnet Attacks,” "DDoS,” "Spoofing,” "Privacy.”

–
- Technologies used: - "Machine Learning,” "Deep

Learning,” "Federated Learning,” "Hybrid Model,”
"Artificial Intelligence,” "AI.”

This research included studies published in peer-
reviewed journals and conferences, focusing primarily
on IoT security and anomaly detection, studies us-
ing machine learning and deep learning techniques
in anomaly detection, and studies that discuss IoT
security from the perspective of the underlying lay-
ers of IoT (Layered Architecture). It also included
papers that provided experimental evaluations and
mentioned clear performance metrics (such as preci-
sion and recall).
This study also excluded studies that did not focus
on IoT security (such as studies that only addressed
performance or energy consumption improvements
without focusing on security), as well as studies that
did not use machine and deep learning techniques
as a primary method for increasing IoT security. This
study also excluded studies and unpeer-reviewed re-
search, as well as duplicate papers published in more
than one source.

6. IOT DOMAIN
The Internet of Things (IoT) is a vast ecosystem
in which devices and systems are interconnected
across multiple domains to communicate, share [43],
and perform various tasks [26]. The IoT encom-
passes diverse applications and is rapidly expanding
[5]. These applications include emergency services,
logistics, retail controls, smart industries [3], security
and healthcare applications, object tracking, home

automation, military applications, industrial automa-
tion, smart cities [5], traffic management, shopping,
sustainability, transportation, manufacturing, delivery,
smart communities, smart street lighting, urban life
safety, urban protection, traffic signals, waste manage-
ment, vehicle networks [26], and everyday consumer
devices such as home assistants and smart watches
[24].
Security is one of the most significant challenges
across all applications.

A. Healthcare:
The Internet of Things (IoT) is a data-driven in-
frastructure that relies on smart sensors (such as
temperature sensors and blood pressure monitors)
to increase response times, diagnoses, and treat-
ments. The Internet of Things (IoT) in healthcare
is also known as digital healthcare [16]. With the
increase in IoT devices in this field and the de-
velopment of cybersecurity threats, these devices
have become vulnerable to various attacks, such
as those associated with generative artificial intel-
ligence and the fifth-generation Internet of Things
(5G IoT). These risks can lead to data theft, unau-
thorized access, a lack of control, management,
security, and potential harm [16].
The integration of a range of medical devices into
the IoT, also known as Healthcare 5.0, has created
the IoT in healthcare, which in turn has paved the
way for a new era of medical practice and patient
care. The Internet of Medical Things (IoT) has
led to the integration of advanced technologies,
and has played a role in improving medical pro-
cesses and procedures, developing services, and
improving patient outcomes [44]. Recently, many
biomedical devices have been developed to assist
patients in monitoring and diagnosing diseases.
Information recorded from biomedical devices is
stored and processed on the central platform to
which these devices are connected [22].

B. Smart Home:
One of the most common applications of IoT is
smart homes, which consist of a variety of inter-
connected devices, including doors, thermostats,
and light switches, which can be controlled via
smart speakers or smartphones [14]. These de-
vices have brought convenience and comfort to hu-
man life and have made many tasks easier. These
devices consist of various computing devices con-
nected to sensors that can communicate, share
data, and be controlled remotely via the Internet or
other types of networks. By the end of 2025, the
total number of IoT devices is expected to reach
20 billion [14].
These devices are small and therefore consume
relatively little power and resources, making it eas-
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ier for attackers to penetrate. Therefore, it is es-
sential to protect the features and integrity of a
smart home environment from external intrusions
and attacks [22].

C. Smart Cities:
Smart cities consist of a set of IoT devices, such as
lighting, connected meters, and sensors, to collect
and analyze data owing to the complex networks
and variety of devices. These devices control,
manage, and implement a range of daily tasks and
services to improve the quality of human life [45].

D. UAVs:
Unmanned aerial vehicles (UAVs) are also known
as drones. Drones have become an important and
influential role in many different sectors, such as
agriculture, the military, trade, and police, in im-
proving the quality of life. They are also exposed
to numerous risks as hostile actors exploit security
vulnerabilities to launch various attacks that can
cause significant damage. These vulnerabilities
include weak communication channels, hardware
and software risks, network threats, and authoriza-
tion risks [12].

E. Industry:
IoT plays a significant role in monitoring and man-
aging the health of industrial machinery to improve
the efficiency and quality of industrial operations
[14]. The Industrial Internet of Things (IIoT) is
an important concept in Industry 4.0, connecting
industrial assets such as machinery and control
systems to information systems and business pro-
cesses. Integrating production IoT devices en-
ables communication and data exchange within
the production systems. Adding sensors to legacy
equipment provides cost-effective upgrades to the
industrial infrastructure within the IIoT [15]. IoT-
enabled systems have been used in manufacturing
environments and a range of commercial applica-
tions [26].
Detection is critical in smart industries to reduce
downtime, improve safety, and prevent equipment
failure from increasing production. The IoT has led
to the provision and collection of a large amount
of data from industrial machines. This information
can be used to automatically detect anomalies that
are difficult for humans to detect manually owing to
their size and complexity. Machine learning (ML)
algorithms are a method for detecting anomalies
in industrial machines by analyzing the data gen-
erated by these devices [15].
Smart systems possess a wide range of capabil-
ities, ranging from smart homes and buildings to
power generation, transportation networks, and
smart facilities, such as factory automation and
management [26]. Internet of Things (IoT) devices
represent 40.2% of the industry and manufactur-

ing. The medical sector uses IoT equipment at
a rate of 30.3%, retail sector uses IoT devices at
8.3%, security sector uses IoT devices at 7.7%,
and transportation sector uses IoT devices at 4.1%
[10]. The amount of data generated by IoT devices
can reach large amounts. The amount of data gen-
erated by these devices is increasing dramatically,
and they may contain sensitive and confidential
information. By the end of 2025, the amount of
data generated by the IoT is expected to reach
73.1 zettabytes [10].

7. ANOMALY DETECTION AND AL-
GORITHMS
An anomaly is a deviation from the normal, ex-
pected, or standard, and may refer to something
unusual, irregular, or problematic. Anomaly de-
tection is the process of identifying abnormal or
unusual events or trends in the data (anomalies).
Anomaly detection finds errors, tracks the sta-
tus, and detects attacks and security breaches.
Anomaly detection is a security method for iden-
tifying when a system’s behavior deviates from
normal [19], potentially leading to malicious activ-
ity [46]. Anomaly based detection can be classi-
fied into model-based and case-based methods [2].
Depending on the situation, anomaly detection can
be performed at the context level, where unusual
data points are detected through their surrounding
context; [21] the group level, where groups of data
elements that do not conform to the norm are de-
tected; [21] or the point level, where data points
that do not conform to the norm are analyzed to
prevent patterns [21].
Anomaly detection involves training the system on
normal behavior and traffic patterns. Anomalies
are considered abnormal if they deviate from nor-
mal behavior. To train the system, we require a
large and complex amount of Internet of Things
(IoT) data and normal network traffic patterns, as
well as significant time to build a profile of these
data [19]. Monitoring network traffic, which is the
primary goal of anomaly detection, is important
for maintaining network security [47]. Anomaly
and attack detection are critical issues in Internet
of Things (IoT) systems. The advancement and
expansion of IoT systems across a variety of dif-
ferent sectors has led to an increase in attacks,
threats, and anomalies targeting these infrastruc-
tures, which can disrupt these systems and their
components and impact their outcomes [48].
Malware detection methods can be divided into
two groups: signature-based identification and
anomaly based identification. Typically, anomaly
based detection determines whether a program
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is malicious or not [49]. Attacks on the Internet
of Things (IoT) are anomalous. For an attack to
succeed, the system must exhibit an unusual be-
havior. Abnormal network traffic, malicious pay-
loads, behavioral abnormalities, and other factors
can cause anomalous data traffic [19]. The In-
ternet of Things (IoT) environment has witnessed
numerous attacks, which, due to their growth and
expansion, have been classified into four types:
physical attacks, encrypted attacks, network at-
tacks, and software attacks. These include buffer
overflow, brute force, DNS poisoning, injection, re-
play, distributed denial of service (DDoS), SQL
injection, and backdoor vulnerabilities. Anomaly
detection can prevent many IoT attacks by send-
ing alerts when unusual or abnormal behaviors
are detected. Anomaly detection can prevent IoT
attacks by sending alerts when abnormal behav-
ior is detected, which helps identify problems with
system functions that could lead to system failure
or shutdown [19]. When the availability, privacy,
and security of the data are compromised, it is
considered a deliberate attack [21].
Supervised algorithms require labeled data for
training and testing to perform tasks such as clas-
sification and regression, To perform classification
tasks, most studies used SVM, ANN, DT, and RF
models [21, 50]. Supervised techniques have two
additional categories: generative and discrimina-
tive techniques. Generative methods, such as
Bayesian networks and hidden Markov models,
describe the combined probability distribution of
input data and output classes. Discriminative meth-
ods such as logistic regression and support vector
machines model the conditional probability distri-
bution of output classes by considering input char-
acteristics. Unsupervised algorithms are used to
perform tasks, such as fluidity and dimensionality
reduction. Clustering is the process of arranging
data points into groups according to a similarity
measure such as cosine similarity or Euclidean dis-
tance. Dimensionality reduction techniques such
as autoencoders and principal component analy-
sis can be used to simplify complex datasets with-
out compromising important information. Labeled
and unlabeled data can be used to train semi-
supervised algorithms jointly or self-train [19]. The
word "self-training" refers to a process in which
a pre-trained classifier is employed to confidently
classify new examples placed in the training set.
Two classifiers are simultaneously learned from
two distinct views or subsets of features and then
employed to cluster the unlabeled data simultane-
ously [21]. There are two types of anomaly detec-
tion based on deep learning: Internet of Things
anomaly detection and attack detection. Anoma-

lies are considered attacks [19].
Anomaly detection can be achieved through unsu-
pervised learning that leverages the abundance of
natural traffic using individual or machine-based
models. One approach to ensemble anomaly de-
tection is iForest, which isolates anomalies by re-
peatedly partitioning data to create a forest of
trees. An unsupervised machine-learning algo-
rithm, OCSVM, was designed for novelty detec-
tion. It identifies anomalies and learns decision
boundaries to encapsulate normal data points. By
calculating the distances between data points, the
density-based anomaly detection (LOF) technique
determines the density of data points and clas-
sifies denser regions as normal and less-dense
regions as anomalies [5]. Similar to the OCSVM,
DeepSVDD separates data samples using a hy-
persphere and uses neural networks to learn fea-
ture representations that aid anomaly detection
[51]. However, anomaly based detection can re-
sult in false positives, packet misclassification, and
poor performance. The capabilities of anomaly
detection systems have increased owing to recent
advances in artificial intelligence. These systems
use supervised machine learning techniques, such
as support vector machines (SVMs) and decision
trees (DTs), and unsupervised machine learning
techniques, such as DBSCAN, K-nearest neigh-
bors, and K-means.
These systems are highly sensitive to changes
in the feature extraction and selection. On the
other hand, deep learning techniques are much
less sensitive to feature selection than machine
learning. Deep-learning-powered intrusion detec-
tion systems have the ability to continuously evolve
and adapt in response to new threats and accu-
rately detect new and potential security breaches
[2]. Using deep learning techniques, features can
be automatically extracted from the data rather
than relying on manual extraction [52]. The emer-
gence of specialized systems, such as the Internet
of Things (IoT) underscores the need for a robust
and highly adaptable intrusion detection system
[2]. The ways in which anomalies or attacks can
threaten the security and privacy of IoT networks
and users are data loss, corruption, leakage, out-
ages, degradation, theft, fraud, and physical dam-
age. Therefore, anomalies and attacks must be
identified and stopped quickly before they cause
further damage [21]. Real-time monitoring sys-
tems must include anomaly-detection techniques
and predictive modeling to detect and mitigate se-
curity threats [24].
Emerging technologies, such as blockchain, gen-
erative artificial intelligence (AI), and quantum
computing, are increasingly being explored to un-
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cover anomalies in the Internet of Things. For
example, hybrid frameworks combining deep neu-
ral networks and blockchain-based logging have
proven effective in improving the detection accu-
racy and integrity of anomaly logs in IoT deploy-
ment [53]. Decentralized detection approaches,
such as CIoTA, also leverage blockchains to co-
ordinate model updates across devices in a col-
laborative and tamper-resistant manner [54]. With
regard to generative artificial intelligence, modern
businesses use GANs, VAEs, and auto-coding-
based generative models to collect attack-like data
or to represent rare anomaly patterns in IoT traffic
flows [55]. Furthermore, quantum machine learn-
ing (QML) offers new opportunities. Systematic
reviews identify QML as a promising approach for
detecting IoT anomalies, particularly for handling
complex, high-dimensional datasets and enabling
more adaptive detection models [56]. In addition,
quantum deep learning frameworks have been
proposed to detect network attacks using quan-
tum support vector-based techniques and quan-
tum auto-cryptage devices [57]. Integrating these
emerging technologies into IoT anomaly detection
frameworks can lead to smarter, scalable, and
more secure detection systems in future IoT envi-
ronments.
Recently, several anomaly detection methods and
techniques have been developed, such as ma-
chine learning and deep learning algorithms [12].
This is because breach detection has received sig-
nificant attention in many academic and industrial
circles for addressing these threats [12]. This is a
major source of motivation for many researchers
to explore these techniques because of their ability
to identify new threats [26].
However, traditional methods are not effective in
detecting new security threats and breaches, and
require longer updates. This can be mitigated
using machine learning (ML) and deep learning
(DL), which are artificial intelligence techniques
[19].
Table 1 presents related studies on the use of
machine learning and deep learning techniques to
detect anomalies and attacks in the IoT, identifying
the algorithms used, dataset, results, features, and
challenges.
By analyzing the twenty-five studies presented
in the table, it becomes clear that the field of
intelligent anomaly detection in the Internet of
Things (IoT) is witnessing a remarkable diversity
of methods and technologies. These methodolo-
gies can be classified into several distinct types:
machine learning (ML) (including "supervised ma-
chine learning"), deep learning (DL), hybrid mod-
els (including "hybrid deep learning,” "hybrid (ML &

DL)", and"hybrid (GNN + Metaheuristic Optimiza-
tion)"), and specific variants of deep learning such
as "generative deep learning.”
The results showed that the machine learning (ML)
category was the most representative among the
studies, appearing in at least ten studies (e.g., [1,
3, 5–7, 9, 15, 18–20]). These studies achieved
remarkably high accuracies, often exceeding 99%
in many cases (e.g., 99.999% in [1], 100% in [9],
99.99% in [5] using RF, and 100% in [19] using
DT/RF for binary classification). The F1 score for
prominent ML models, such as Random Forest
and Decision Tree, was consistently high, often at
or close to 100%, in several studies. In contrast,
the deep learning (DL) class showed strong but
sometimes variable performance, with accuracy
ranging from 8̃2.58% (LSTM on UNSW-NB15 in
[5]) to 100% (LSTM on Edge-IIoTset in [13]). The
hybrid deep learning class, which combines algo-
rithms such as CNN-LSTM (e.g., [8, 23]), ACLR
[16][16], and IMFOHDL-ID [24], showed generally
high and robust performance with accuracy fre-
quently ranging between 98% and 99.9%. The
main challenge observed for these hybrid mod-
els, particularly in [8, 11, 16], is their increased
computational complexity, which may limit their
application in resource-limited IoT devices.
At the individual algorithm level, the decision forest
(RF) has consistently demonstrated exceptional
accuracy, exceeding 99% in multiple studies and
datasets (e.g., 99.71% on WSN-DS [5], 100% on
IoTID20 [9], and 99.55% on CICIoT2023 [18]), re-
flecting its effectiveness in detecting trait-based
anomalies with relatively low complexity. Similarly,
decision TreDT has achieved 100% accuracy and
a complete F1 score in studies such as [9] and [25].
In contrast, LSTM-based models (e.g., in [5, 8, 13,
23]) are efficient in temporal behavior analysis, al-
though their performance is more dependent on
the dataset. SVM algorithms have shown accept-
able performance but are generally lower and more
variable (e.g., accuracy: 97% in [6], and 88.29% in
[9]), with an average accuracy significantly lower
than their tree-based counterparts.
The most prominent datasets used across the stud-
ies were BoT-IoT (used in [13, 17, 24, 25]) and
TON_IoT (used in [2, 4, 5, 7, 11, 12]) and UNSW-
NB15 (used in [2, 5, 16, 17]) and CIC-IDS variables
(used in [5, 6, 10, 11, 13, 17]) and IoT-23 (used
in [4, 17]). Despite its prevalence, which covers
a significant part of the reviewed research, this
dependence on a common set of criteria may limit
the ability of models to generalize, as it is mani-
fested when tested in diverse or specialized IoT
environments.
The results also highlight the use of more special-
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Figure 6. Performance metrics for the various anomaly detection algorithms of the scientific references mentioned in Table 1

ized datasets, albeit in a smaller number of studies.
These include CICIoT2023 for industrial environ-
ments [18], Route-4-2023 for RPL protocol attacks
[14], LDE/CDE for the Medical Internet of Things
(IoMT) [3], and the LoRa dataset for physical layer
impersonation [21].
Based on this analysis, this field requires a unified
assessment framework. This framework should
standardize the reporting of key statistical met-
rics (e.g., accuracy, precision, recall, F1 score,
AUC, and FPR), promote transparency regarding
data sources and preprocessing steps, and man-
date rigorous evaluation across multiple datasets
(Cross-dataset Evaluation) to assess the ability of
models to generalize across IoT environments and
different attack scenarios.

8. IOT SECURITY : OPEN CHAL-
LENGES
The increasing use of the Internet of Things (IoT)
in various fields, including transportation networks,
smart grids, healthcare, and drones, has raised
significant security concerns. The following are
the most notable unresolved issues and potential
areas for IoT security research:

A. Authentication and Privacy Enhancement
- Drone Security: Research into biometric au-
thentication (physiological/behavioral), natural
language processing (NLP), and image-based
verification to improve detection and network
security [12].
- Hybrid authentication systems: Combining
machine learning with programmable metasur-
faces such as smart overlays (SIMs) to en-
hance intrusion detection efficiency [19].

B. Advanced Intrusion Detection Systems
(IDS)
- Hybrid Deep Learning Models: To detect
asymmetric attacks, such as insider threats and
ransomware, HIDS-RPL must be scaled while
reducing computational complexity [45].
- Exploratory and graph-based approaches:
To address data imbalances and enhance input-
output security, accurate tree models must be
improved. [17].
- Multiview CNNs and GNNs: These are scal-
able models designed for large datasets. Dis-
tributed frameworks are enhanced by integrat-
ing knowledge graphs to handle structured and
unstructured data [9].

C. Real-time threat detection and response
- Deep learning for anomaly detection: Improv-
ing and developing real-time response systems
capable of predicting various attacks [14].
- Enhancing heterogeneous datasets and tests:
Using diverse datasets improves adaptability in
IoT [14].

D. Federated Learning and Explainable Artifi-
cial Intelligence (XAI)
- Federated multitask learning (FMTL): Improv-
ing and enhancing model training across multi-
ple tasks in VANETs while preserving privacy
[2].
- XAI for Transparency: Detecting privacy
threats and improving explainability in intrusion
detection by combining federated learning and
explainable AI. [11].

E. Integrating Blockchain Technology and Ar-
tificial Intelligence
- Smart grid security: The combination of AI
and blockchain to combat false data injection,
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topology attacks, and big data vulnerabilities
[20].
- Preventing Zero-Day Attacks: Combining SDN,
Blockchain, and Deep Learning to Secure IoT
Devices from Advanced Threats [5].

F. Optimizing Endpoint Resources
- Lightweight Machine Learning: To detect
denial-of-service attacks, models are deployed
on endpoint devices (such as the Raspberry Pi)
[8].
- Computational Efficiency: Reducing power
consumption and response time in intrusion
detection systems (IDS) (e.g., via SIM cards
and enhanced AIDS systems) [69].

G. Emerging IoT Areas
- Industrial Internet of Things (IIoT): Detection
of sensor failures and discovery of innovative
AI and IIoT solutions [58].
- New Datasets and Algorithms: Testing mod-
els on new datasets while incorporating unsu-
pervised techniques such as CIPMAIDS2023-1
and CIDIDS [62].

H. Explainability and Transparency
- Augmented AI with Reinforcement Learning:
To detect IoT intrusions in an explainable man-
ner [4].

9. CONCLUSION AND FUTURE RE-
SEARCH DIRECTIONS
This review was thoroughly subjected to 69 peer-
reviewed studies on intelligent anomaly detec-
tion in IoT Security published between 2018 and
the present. The comparison focused on three
main algorithm families: machine learning (ML),
Deep Learning (DL), and hybrid/advanced models,
which also addressed the accuracy of the reported
models, their recall, and F1 score.
Consolidated analysis revealed that ML-based
approaches achieved remarkably high precision
(99.38%) and recall (98.62%), confirming their
robustness and interpretability in lightweight IoT
environments. However, their average accu-
racy (82.92%) was noticeably lower than that
of more advanced architectures.Deep learning-
based technologies, despite their computational
intensity, achieved improved accuracy of 88.88%
and demonstrated superior adaptability to complex
and high-dimensional Internet of Things traffic, al-
beit with a slight decrease in recall rate (84.30%)
due to data imbalance and over-processing risks.
In contrast, the hybrid and combined architec-
tures, which integrate machine learning and deep
learning models, outperformed all other categories,
achieving an average accuracy of 99.35% and an
F1 score of 99.60%, confirming their ability to bal-

ance efficiency, scalability, and detection quality.
These results indicate a gradual shift from tradi-
tional machine-learning classifiers to hybrid and
deep frameworks capable of capturing nonlin-
ear dependencies and time features in IoT data
streams. Despite the outstanding performance of
these models, deep learning and hybrid systems
still face persistent challenges related to the com-
putational cost, energy consumption, and model in-
terpretability, all of which are critical in constrained
IoT environments. Therefore, hybrid models that
combine ML simplicity with DL robustness, such
as CNN–LSTM and Federated Learning-based
designs, have emerged as promising research
directions for lightweight, adaptive, and privacy-
preserving anomaly detection.
To address these challenges and enhance and
improve the security of IoT, future research should
focus on the following three strategic areas:

1- Algorithmic Optimization involves creating ex-
plainable and resource-efficient models that
combine Federated Learning and Explainable
AI (XAI) to improve privacy and interpretability,
while preserving high detection accuracy.

2- Architectural Integration: In large-scale IoT
ecosystems, utilizing Edge/Fog computing for
localized, real-time detection and blockchain for
tamper-proof communication can reduce the la-
tency and bandwidth overhead.

3- Standardization and Collaboration by estab-
lishing unified datasets, performance bench-
marks, and evaluation protocols through inter-
disciplinary collaboration among academia, in-
dustry, and government to ensure reproducibil-
ity, transparency, and global security standards.

In conclusion, no single algorithmic paradigm pro-
vides a universal solution for the IoT anomaly de-
tection. The future of secure IoT environments
will depend on hybrid, federated, and explainable
AI frameworks that harmonize accuracy, trans-
parency, and scalability, paving the way for re-
silient, trustworthy, and energy-efficient IoT se-
curity systems over the next decade.
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