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Abstract
Fingerprint recognition has widespread security applications owing to its uniqueness, permanence, and simplicity
in capture. However, conventional fingerprint authentication systems face high false acceptance and rejection
rates and susceptibility to spoofing attacks. To address these issues, this study proposes a deep learning-
based fingerprint authentication system using a Convolutional Neural Network (CNN) with five convolution layers
to derive robust spatial features. The model was trained and cross-validated on the SOCOFing dataset with
regularization and data augmentation to enhance generalization and spoof resistance. Experimental results
show that the proposed CNN achieved a training accuracy of 99.10% with a loss of 0.0223 and a validation
accuracy of 98.89% with a loss of 0.0114. Moreover, the model maintained a low false acceptance rate of 0.33%
and false rejection rate of 0.25%, demonstrating its efficacy and credibility for secure and real-time biometric
authentication. A rigorous comparison with conventional CNN models and DCCN architectures confirmed that
the proposed model provides higher accuracy, lower computational cost, and stronger resistance to spoofing
attacks. These findings indicate that the proposed system successfully addresses existing limitations and offers
a practical, scalable, and reliable solution for fingerprint verification using deep CNN architectures.
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1. INTRODUCTION

Fingerprint recognition is a widely used biometric modal-
ity due to its uniqueness, permanence, and ease of
capture, finding applications in law enforcement, bank-
ing, healthcare, and border protection because of its
accuracy and low cost. However, traditional systems
face challenges such as spoofing attacks, false accep-
tance/rejection rates, and limited scalability on large
heterogeneous databases, which reduce reliability in
high-security applications [1]. Recent advances in deep
learning, particularly Convolutional Neural Networks
(CNNs), have significantly improved biometric authen-
tication. CNNs automatically extract complex spatial
features from fingerprint images, offering superior adapt-
ability and robustness compared to traditional methods
relying on handcrafted features [2–4].Previous studies us-
ing shallow networks reported moderate success: Radzi
et al. (2024) applied LeNet-5 achieving 95.8% accuracy,

Fairuz et al. (2023) used AlexNet with transfer learning
for 95.2%, and Das et al. (2023) developed a three-layer
CNN reaching 96%. Some approaches combined CNNs
with LSTMs, but this increased model complexity and
inference time.

This study proposes a five-layer CNN for fingerprint
verification that balances depth, accuracy, and compu-
tational efficiency [5]. Trained on large heterogeneous
datasets with data augmentation and regularization, the
model achieved high classification accuracy, low error
rates, and strong spoof resistance. Unlike shallow or
hybrid networks with high computational costs, the pro-
posed architecture efficiently extracts discriminative hi-
erarchical features, enhancing generalization across di-
verse samples.

Key contributions include:
1. a deep CNN architecture with strong feature extrac-

tion.
2. comprehensive performance evaluation using ac-
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curacy, FAR, FRR, and F1-score.
3. testing under varied data and spoofing conditions.
4. comparison with state-of-the-art methods, demon-

strating superior reliability and efficiency.
This approach provides a scalable and practical solu-

tion for real-time fingerprint authentication.

2. RELATE WORK
Fingerprint recognition is a widely used biometric modal-
ity due to its ease of use, low cost, and high accuracy.
However, traditional matching algorithms face challenges
such as spoofing, poor image quality, and limited scala-
bility in real-world applications [1, 2]. To overcome these
limitations, deep learning, particularly CNNs, has been
increasingly adopted for automatic learning of robust
spatial features from large-scale data, improving both
accuracy and anti-spoofing performance [3, 4].

Early studies using shallow CNNs showed promising
results; for instance, Radzi et al. (2024) applied LeNet-5
achieving 95.8% accuracy, Das et al. (2023) developed
a five-layer CNN reaching 96%, and Fairuz et al. (2023)
used AlexNet with transfer learning for 95.2% accuracy
[6, 7]. Despite their effectiveness, these models were
limited in scalability and robustness.

Advanced CNN architectures have been introduced
to enhance security. Zhao et al. (2024) proposed a
multi-scale CNN capturing both fine and coarse finger-
print features, while other studies demonstrated strong
spoof detection capabilities [8, 9]. Our study bridges the
gap between shallow and deep networks by proposing a
five-layer CNN that improves feature extraction, spoofing
resilience, and overfitting mitigation. With preprocess-
ing, data augmentation, and regularization, the model
generalizes well across diverse inputs [10, 11]. Unlike
computationally intensive ensemble methods, our CNN
balances efficiency and accuracy, achieving 99.10% ac-
curacy with a 2.65-second inference time [7, 12, 13].

Deep CNNs are also being integrated with IoT applica-
tions to enable real-time biometric security in healthcare
and identification systems [14]. Overall, adopting deep
CNNs with advanced preprocessing and regularization
is crucial for secure, scalable, and real-time fingerprint
authentication, offering superior robustness, hierarchi-
cal feature representation, and applicability in practical
scenarios. Table 1 summarizes key differences between
shallow and deep CNNs in depth, feature representation,
robustness, and real-time suitability.

3. METHODOLOGY AND MATERIALS
To enhance fingerprint authentication security, this study
uses deep CNNs for feature extraction and classifica-
tion. Preprocessing involves resizing images to 96 ×
96 pixels, normalizing pixel values, and applying data
augmentation.

Table 1. Comparison Between Traditional CNN and Proposed
Deep CNN (DCNN)

Feature Traditional (CNNs) Deep (CNNs)
Network
Depth

2–3 layers, limited
feature extraction

5+ layers, up to
200, enabling
deeper features

Feature Rep-
resentation

Low-level features
like edges and tex-
tures

Multi-level hierar-
chical features for
better discrimina-
tion

Robustness&
Security

Prone to overfitting,
less robust

More robust via
depth, augmenta-
tion, regularization

Recognition
Accuracy

Moderate accuracy Superior accuracy,
fewer errors

Real-Time
Suitability

Lower complexity
but limited security

Balanced depth
and efficiency for
real-time use

including rotation, flipping, and contrast adjustment,
improving robustness, generalization, and resistance to
spoofing.

The CNN captures abstract spatial features, such as
ridge patterns and texture variations, essential for distin-
guishing real from fake fingerprints. Training employed
the Adam optimizer with categorical cross-entropy loss
for effective convergence. To prevent overfitting, learning
rate scheduling and early stopping were used, with an
80–20 train-validation split.

Model performance was evaluated using accuracy,
precision, recall, F1-score, and ROC curves. The pro-
posed CNN achieved 99.10% accuracy, demonstrating
high reliability, strong anti-spoofing capability, and cost-
effective secure fingerprint verification suitable for real-
world biometric applications.

3.1. System Workflow
The fingerprint images were first preprocessed by resiz-
ing them to 96 × 96 pixels to meet the input requirements
of the proposed CNN model (Figure 1). The dataset
served as the foundation for training and testing.

3.2. Preprocessing
Raw fingerprint images undergo several preprocessing
steps before training and testing to enhance security and
stability in recognition. Initially, all images are resized
to a standard 96 × 96 pixels to introduce homogeneity,
enabling the deep CNN to learn discriminative features
crucial for secure identification. Pixel values are nor-
malized to the 0–1 range, stabilizing training, improving
convergence, and reducing sensitivity to variations in
lighting or sensor noise that could compromise spoofing
resistance.

The dataset is split into training, validation, and testing
sets, allowing the model to be trained on one subset while
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Figure 1. CNN Model Workflow

rigorously evaluating generalization on unseen samples,
essential for real-world deployment. After training, per-
formance is assessed using standard evaluation metrics
to ensure reliability and robustness. The trained CNN
model is then used to predict new fingerprint inputs. Op-
timization algorithms and hyperparameter tuning further
enhance performance and prevent overfitting.

This CNN-based approach provides strong general-
ization, high precision, and enhanced security, making it
suitable for practical fingerprint verification applications.

3.3. Architecture of the Proposed Net-
work

The proposed deep CNN for fingerprint verification uses
five convolutional layers with ReLU, batch normalization,
max-pooling, and dropout to learn complex features while
preventing overfitting and enhancing robustness against
spoofing.

Feature learning occurs hierarchically:

• The first layer captures basic textures and edges.
• The second extracts corners and fine patterns.
• The third identifies higher-level fingerprint struc-

tures.
• The fourth refines these features and models local.
• The fifth combines abstract representations for ro-

bust classification.

The final convolutional output is flattened and passed
through dense layers, producing a softmax classification
(real or fake). Training uses the Adam optimizer with
categorical cross-entropy loss, early stopping, and learn-
ing rate scheduling to ensure convergence. This design,
grounded in established image recognition principles,
delivers secure and reliable fingerprint authentication
through strong, hard-to-replicate feature extraction.

3.4. Optimization and Training Details

To ensure high accuracy and robust security, the pro-
posed fingerprint authentication system uses a deep
CNN optimized with effective techniques. All convolu-
tional layers employ ReLU activation to capture com-
plex, discriminative features for distinguishing real from
spoofed fingerprints. Weights are initialized using He uni-
form initialization for faster and stable convergence, while
the final dense layer uses softmax for binary classifica-
tion. The model is trained with the Adam optimizer (learn-
ing rate 1 × 10-4) minimizing categorical cross-entropy.
Early stopping and adaptive learning rate decay prevent
overfitting and improve generalization. These strategies
collectively enhance the model’s security, reliability, and
efficiency in fingerprint verification.
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3.5. Proposed Deep Convolutional
Neural Network Approach

The proposed approach employs deep CNNs to classify
fingerprints as genuine or forged, enhancing authenti-
cation security. Convolutional layers extract spatial in-
formation stage by stage, capturing low-level edge and
texture patterns as well as high-level abstract features
necessary for accurate identification. Each convolutional
layer is followed by max-pooling and dropout operations,
which strengthen feature representations and reduce
overfitting, allowing the model to generalize effectively to
unseen fingerprints. This framework enables the CNN to
learn discriminative, hierarchical, and robust representa-
tions resilient to noise, distortions, and spoofing attacks.
By leveraging selective deep convolutional computation,
the model accurately detects subtle differences between
real and fake fingerprints, ensuring precise classification
and strong security performance even under challenging
verification conditions.

3.6. Architectural Components of the
Proposed Model

To enhance the security and robustness of fingerprint
authentication, the proposed architecture was integrated
with a set of specially developed preprocessing and deep
learning modules to enable effective feature extraction
and classification.

The fingerprint image was first normalized by normal-
izing the pixel values in the range [0, 1] to generate a
consistent intensity across samples. The image was
resized to 96 × 96 pixels to obtain a fixed input size suit-
able for convolutional processing. The grayscale image
is then binarized to minimize texture information and en-
hance the contrast of ridge patterns, which are crucial
for recognition. Although thinning is not applied explicitly,
the data are enriched by applying transformations, such
as rotation, translation, zooming, and horizontal flip.

3.7. Feature extraction via CNN

The preprocessed fingerprint image is then input into a
deep CNN for feature extraction and classification. Con-
volutions employ learnable kernels to derive hierarchi-
cal spatial features including ridge endings, bifurcations,
and unique fingerprint textures. Max-pooling layers are
employed to reduce the spatial resolution of the fea-
ture maps so that only the most salient information is
preserved without affecting the computation efficiency.
Dropout regularization was employed during training to
prevent overfitting. The final output from the CNN layers
is converted into a feature sequence, which may be pro-
cessed or classified according to the structure adopted.
These deep features are essential for secure and dis-
criminative fingerprint representations, which are more

robust against spoofing and forgery. The extracted fea-
tures are passed through deeper layers of the CNN to
learn complex spatial patterns such that the system can
securely and accurately distinguish between real and
spoofed fingerprints (Figure 2)
Loss Function Optimization: For enhanced secure and
accurate fingerprint categorization, the model uses cate-
gorical cross-entropy as the optimization loss to be mini-
mized by the Adam optimizer, which learns dynamically
to adapt the learning rate to achieve faster convergence
and greater robustness.

Model Tuning: The CNN model was trained for over
50 epochs with batch size of 32 and a validation split
of 0.2. To further prevent overfitting and reliable perfor-
mance on varying fingerprint inputs , early stopping and
learning rate reduction strategies were employed (see
Figure 3).

4. EXPERIMENTAL RESULTS AND
MODEL EVALUATION OF THE PRO-
POSED MODEL

4.1. Datasets
Figure 4 shows the training and testing of the proposed
method on the SOCOFing dataset [15], containing 6,000
fingerprint images from 600 African subjects, with 10 fin-
gerprints per subject. Metadata includes gender, hand,
and finger names. To simulate real-world spoofing, im-
ages were manipulated using the STRANGE toolbox with
obliteration, central rotation (15°–180°), and Z-cut. The
dataset comprises three difficulty levels—easy, medium,
and hard—totaling 55,273 images. Fingerprints were
scanned using Hamster Plus and SecuGen devices at
500 dpi and stored in 96 × 103 grayscale pixels. File-
names encode metadata for detailed analysis. The
dataset is publicly available on Kaggle under the Cre-
ative Commons license (CC BY-NC-SA 4.0) [15]. Dense
annotations and diverse manipulations support robust
training and evaluation, replicating realistic scenarios to
ensure model reliability and generalization in fingerprint
verification tasks.

4.2. Experimental Setup and Hyperpa-
rameter Configuration

The experimental setup focused on improving security
and reliability in fingerprint verification using a deep CNN.
Grayscale images were resized to 96 × 96 pixels and
preprocessed via scaling and normalization. Data were
processed in mini-batches of 32 to optimize computa-
tional efficiency and memory usage. The dataset was
split 80% for training and 20% for testing, with unseen
test data ensuring unbiased evaluation, complemented
by 5-fold cross-validation for stable performance assess-
ment.

The CNN consisted of five convolutional layers with
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Figure 2. Fingerprint Recognition System Based on Feature Extraction Techniques

Figure 3. Architecture of the Proposed Model

Figure 4. Details of Sokoto dataset.

64–512 filters, each followed by 2 × 2 max-pooling and
dropout to prevent overfitting. ReLU activation and L2
regularization (λ = 0.01) were applied throughout. A

fully connected layer with 128 ReLU units preceded a
softmax output for binary classification (real or fake). The
model trained for 50 epochs using Adam (learning rate
1 × 10-4) and categorical cross-entropy loss, with early
stopping (15-epoch patience) and learning rate reduction
enhancing generalization.

Training was performed on the CONFIG dataset and
tested on a separate unseen dataset to validate secu-
rity, robustness, and generalization. Detailed layer-wise
architecture and parameters are presented in Table 2.

4.3. Hardware and Computational Re-
quirements

The model was deployed and tested on a Dell Preci-
sion 3550 laptop with a 15.6" Full HD display, Intel Core
i7-13310U CPU, 32 GB RAM, and 512 GB SSD run-
ning Windows 11 Pro. Training required about 12 GB
of memory, while inference used less than 2 GB, with
an average processing time of 2.65 seconds per sam-
ple. These results indicate the model is computationally
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Table 2. Detailed vertical configuration of the proposed DCNN model.

Layer Type Filters / Units Filter Size Activation
Function

Pooling Dropout

Input — — 96×96 (grayscale image) — — —
Conv1 Conv 64 filters 3×3 ReLU 2×2 Max Pooling Yes
Conv2 Conv 128 filters 3×3 ReLU 2×2 Max Pooling Yes
Conv3 Conv 256 filters 3×3 ReLU 2×2 Max Pooling Yes
Conv4 Conv 384 filters 3×3 ReLU 2×2 Max Pooling Yes
Conv5 Conv 512 filters 3×3 ReLU 2×2 Max Pooling Yes
FC Fully Connected 128 units — ReLU — —
Output Softmax 2classes — — — —

efficient and can run effectively without hardware acceler-
ation, making it suitable for deployment on low-resource
or portable security systems. Minor optimizations could
enable operation in highly constrained environments.

4.4. Performance Evaluation Metrics

To analyze the performance of the proposed deep CNN-
based fingerprint classification model extensively, several
common evaluation metrics were used. These metrics
provide numerical values of the accuracy, reliability, and
ability of the model to differentiate between genuine and
fake fingerprints, which is useful for trustworthy biometric
security authentication systems.

• Accuracy: is the combined proportion of finger-
prints identified correctly and is computed as:

Accuracy =
(TP + TN)

(TP + TN + FP + FN)

Where:

• TP: True Positives number of positive samples
correctly classified

• TN: True Negatives number of negative samples
correctly classified

• FP: False Positives number of negative samples
incorrectly classified as positive

• FN: False Negatives number of positive samples
incorrectly classified as negative

• Precision: Is the number of fingerprints predicted
to be real that actually were real:

Precision=
TP

(TP + FP)

• Recall: Is the ability of the model to correctly
identify real fingerprints:

Recall =
TP

(TP + FN)

• F1-Score: Is a combination of Precision and Re-

call into a single metric to balance their trade-offs:

F1−Score=
2 × (Precision × Recall)

(Precision + Recall)

• Binary Cross-Entropy Loss: Is used to compute
the difference between the predicted probability and
actual binary label. It is defined as:

Loss = - [ y log(ŷ) + (1 - y) log(1 - ŷ) ]
Where:

• y represents the true class label
• y=1 means the sample is genuine
• y=0 means it is fake.
• ŷ represents the predicted probability output by the

model that the sample belongs to the genuine class (a
value between 0 and 1).

• log: The natural logarithm function used to calcu-
late the log-likelihood.

4.5. Experimental Results
Detailed experiments using a deep CNN evaluated the
effectiveness of the proposed fingerprint authentication
method. Training and validation accuracy and loss are
summarized in Table 3, while 4 presents precision, recall,
and F1-score metrics, Table 5 compares classification
accuracy with recent studies. and and compares com-
putational complexity and execution times, highlighting
the proposed model’s efficiency. Figures 5–10 illustrate
training and validation trends, precision, recall, and ROC
curves, demonstrating robust performance.

Table 3. Model Accuracy, Loss Trends, and Performance
Scores for Fingerprint Recognition.

Phase Accuracy
(%)

Precision
(%)

Recall
(%)

F1-
Score
(%)

Loss
Value

Training 99.10 99 99.1 99.1 0.0223
Validation 98.89 99 100 100 0.0114

The CNN achieved 99.10% training accuracy and
98.89% validation accuracy on the Config dataset, with
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loss values of 0.0223 and 0.0114. Precision, recall, and
F1-scores were all near 99%, confirming the model’s
strong ability to accurately distinguish real from spoofed
fingerprints. These results demonstrate high classifica-
tion performance, enhanced security robustness, and the
reliability of the proposed CNN for secure and effective
fingerprint verification in practical applications.

Table 4. Classification Performance Report for Fingerprint
Recognition System

Class Precision
(%)

Recall
(%)

F1-Score
(%)

Support

Real 99.0 100.0 99.0 2814
Fake 100.0 99.0 99.0 2895

Accuracy 99.10 5709
Macro

avg
99.5 99.5 99.0 5709

Weighted
avg

99.5 99.5 99.0 5709

The proposed CNN-based fingerprint authentication
model was trained and evaluated on the SOCOFing
dataset, containing real and synthetic fingerprints. It
achieved 99.10% training accuracy and 98.89% valida-
tion accuracy, demonstrating strong generalization to
unseen data. Precision reached 99% for real and 100%
for fake fingerprints, resulting in very low false positives,
while recall values produced an F1-score of 99% for both
classes. Overall accuracy across 5,709 samples was
99.10%.

Figure 5 shows Smooth training and validation curves
indicate minimal overfitting, confirming the model’s relia-
bility and suitability for secure fingerprint verification on
unseen data.

Figure 5. Training and validation accuracy of the proposed
CNN-based fingerprint authentication model

Figure 6 shows steadily declining loss curves, reflect-
ing effective optimization and error minimization. Smooth

convergence in loss and accuracy, along with minimal
oscillations, demonstrates that dropout and L2 regular-
ization successfully prevent overfitting, confirming stable
and reliable model training.

Figure 6. Training and validation loss of the proposed CNN-
based fingerprint authentication model

Figure 7. shows the ROC curve with an AUC of 1.00,
indicating perfect classification. The model achieves
100% sensitivity and specificity, zero errors, and demon-
strates flawless discriminative capability, confirming its
excellent performance for precise binary fingerprint clas-
sification

Figure 7. Training and validation loss of the proposed CNN-
based fingerprint authentication model

Figure 8. shows the F1 score versus threshold, peaking
at 0.95 within the 0.4–0.6 range, indicating optimal recall-
precision balance. Performance decreases at extreme
thresholds, but the model maintains strong predictive
ability overall, demonstrating high classification accuracy
and effective calibration for minimizing false positives
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and negatives. Figure 9 shows the Precision-Recall

Figure 8. F1 score vs. threshold plot

curve with an AUC of 1.00, achieving 100% precision
and recall. This indicates perfect separation of positive
instances across all thresholds, reflecting an exception-
ally competent classifier or an ideal, perfectly separable
dataset.

Figure 9. Precision-Recall curve

Figure 10 confusion matrix highlights the model’s
strong classification performance. It correctly identifies
2,813 real fingerprints with only 12 false positives and 23
false negatives, while accurately predicting 2,763 fake
cases, demonstrating high precision, reliability, and ro-
bust ability to distinguish real from fake fingerprints.

4.6. Performance Analysis

accuracy and 98.89% validation accuracy, and minimal
loss difference (0.0223 vs. 0.0114), indicating effective
convergence, strong generalization, and minimal over-
fitting. Its five-layer convolutional architecture learned
hierarchical features: early layers captured edges and

Figure 10. Results of the proposed technique.

Figure 11. The confusion matrix
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textures, while deeper layers extracted high-level struc-
tures like ridge directions and minutiae, enabling accu-
rate classification despite variations in quality, orientation,
or partiality.

Compared to shallow CNNs, the deeper model
showed improved performance (Table 2) through dropout,
L2 regularization, early stopping, and data augmenta-
tion. Techniques such as rotation, flipping, and zooming
enhanced robustness and anti-spoofing capabilities. Ac-
curacy, precision,

recall, and F1-score metrics confirmed balanced per-
formance, while the confusion matrix (Figure 10) showed
2,802 true and 2,874 imposter fingerprints correctly clas-
sified, with only 14 misclassifications.

The model processed each sample in 2.65 seconds,
demonstrating operational efficiency and suitability for
real-time fingerprint authentication, combining high ac-
curacy with practical deployment for secure biometric
systems.

Table 5. Comparison of Recognition Accuracy and Execution
Time in Deep CNN-Based Fingerprint Authentication Models

No Reference Method Recognition
Accuracy

Execution
Time (s)

1 Radzi et
al. (2024)

[16]

LeNet-5
CNN

95.8% 1.2

2 Das et al.
(2023)

[17]

CNN (3
convolu-

tional
layers)

96.0% 1.8

3 Fairuz et
al. (2023)

[18]

Transfer
Learning
(AlexNet

CNN)

95.2% 2.1

4 Yang et
al. (2023)

[19]

CNN +
LSTM

(for refer-
ence)

93.5% 3.9

5 Jang et
al.

(2024)26
[20]

CNN-
LSTM

(for refer-
ence)

93.8% 3.6

6 Minaee
et al.

(2023)
[21]

ResNet50
+ LSTM
(for refer-

ence)

95.7% 4.5

7 Proposed
(Current
Study)

CNN (5
convolu-

tional
layers)

99.07% 2.65

4.7. Efficiency of the Proposed CNN
Model in Real-Time Fingerprint
Classification

Table 3 Show the performance of seven CNN-based bio-
metric authentication models, including the introduced

CNN model. The comparison reveals the proposed
model with competitive execution time of 2.65 seconds
and higher accuracy of 99.10%, making it suitable for
real-time applications.

Execution time is the measurement of how long it
takes from the time that the processing of the input starts
until the processing of the output of the prediction stops.
TheA second definition of the

Texecution =
∫ toutput

tinput

dt

where
InputT and outputT : are the input and output times, re-
spectively, of the prediction step. This integral calculates
the average time elapsed during the inference, which
represents the actual time responsiveness of the model.

Table 5. Comparison of Recognition Accuracy and
Execution Time in Deep CNN-Based Fingerprint Authen-
tication Models

The proposed five-layer CNN achieved 99.07% ac-
curacy, surpassing LeNet-5 (95.8%) and a three-layer
CNN (96.0%), with 2.65 seconds per sample. This bal-
ance of high accuracy and efficiency makes it suitable for
real-time fingerprint authentication and secure biometric
applications.

5. CONCLUSIONS
This study proposes a deep CNN model designed to
enhance security and accuracy in fingerprint verifica-
tion. Utilizing multiple convolutional layers, the model
effectively learns subtle spatial features, enabling robust
differentiation between real and tampered fingerprints.
Experiments on datasets such as SOCOFing show that
the CNN-based approach outperforms traditional meth-
ods, ensuring secure biometric authentication. Quanti-
tative evaluation revealed 99.10% training accuracy and
98.89% validation accuracy, with precision up to 99%
and recall reaching 100% for validation. F1-scores were
99.1% for training and 100% for validation, and loss val-
ues remained low (0.0223 and 0.0114), reflecting high
reliability, strong spoofing resistance, and practical utility.
The model is optimized for real-time fingerprint identifi-
cation, critical for high-security applications like border
control and financial authentication. Future work could
enhance generalization through heterogeneous finger-
print datasets and advanced techniques such as transfer
learning and attention mechanisms. Architectural refine-
ments may reduce computational complexity, enabling
deployment on resource-limited devices. Integrating this
CNN into multimodal systems with fingerprints, face, iris,
or voice could further strengthen authentication security.

Overall, the study presents a balanced deep CNN
that surpasses shallow or hybrid models, achieving high
accuracy, enhanced spoofing resistance, and real-time
processing, providing a practical, scalable, and secure
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solution for fingerprint verification systems.
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