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Abstract
Intrusion detection is crucial for securing Industrial Internet of Things (IIoT) networks, especially within edge com-
puting environments. Traditional Intrusion Detection Systems (IDSs) struggle with the complexity and dynamic
nature of IIoT networks, where increasing intrusion classes make classification tasks more challenging. While
the Asynchronous Advantage Actor-Critic (A3C) algorithm has shown promise in reinforcement learning-based
IDSs, previous A3C implementations suffer from slow convergence, high variance, unstable gradient updates,
and inefficient parameter synchronization. These issues limit their ability to accurately classify diverse attack pat-
terns, particularly underrepresented intrusion types. To address these challenges, this research introduces an
Enhanced A3C (EA3C) using an enhanced convolutional neural network (CNN) structure to significantly improve
feature representation compared to traditional fully connected networks from the dataset before passing them to
the policy and value networks. Additionally, gradient clipping will be applied to prevent exploding gradients, and
bootstrapping-based reward handling will be used to enhance policy and value estimation for better long-term
learning and improved intrusion detection performance.

The proposed approach is evaluated using the X-IIoTID dataset, which is a comprehensive benchmark that is
effective in detecting a wide range of cyber threats in IIoT environments. Experimental results indicate that the
EA3C algorithm significantly outperforms Decision Tree (DT), Adversarial Environment Reinforcement Learning
(AERL), Double Deep Q-Network (DDQN), and traditional A3C algorithms, particularly in identifying underrepre-
sented attack classes. The results of EA3C show that its weighted Accuracy, Precision, Recall, and F1-score
exceeded 0.98, making it suitable for practical use with the increasing number of labeled classes of cyber-attacks.
Although these results are promising, this algorithm needs further improvement, especially for attacks with very
small samples or attacks that occur for the first time, such as zero-day attacks.
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1. INTRODUCTION:

Cyber intrusion detection is a major security priority in
IIoT networks linked to edge computing across the net-
work. IIoT is used in edge computing to process data and
make real-time decisions in several important fields such
as agriculture, industry, medicine, etc., improving the
responsiveness and efficiency of industrial operations
[1]. However, this distributed infrastructure has flaws that
cybercriminals may exploit as vulnerabilities to carry out
their attacks, which may lead to huge problems [2].

These problems arise because the IIoT network con-
tains several components such as control units, sensors,
and actuators [3]. For example, any vulnerability may be
exploited by hackers through the use of communication
channels, systems, or protocols to gain unauthorized ac-
cess. This may lead to significant damage, such as data
theft, data modification, or the halt of basic operations,
causing significant financial losses in the economic field
[4].

Moreover, it is difficult to detect intrusion due to the
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nature of the end devices in the IIoT network. This is
because of the limited resources in these devices, such
as memory capacity and processing power [5]. Hence,
the performance of intrusion detection and efficiency
of these resources must be balanced in IDS in edge
computing to prevent the end devices from exhausting
their resources.

In addition, the IIoT network is dynamic due to the
constant addition and deletion of devices and compo-
nents. Traditional IoT algorithms detect attacks based
on current, pre-configured settings, which may be insuffi-
cient in an environment where network components are
constantly changing [6]. Therefore, IDSs need to be able
to detect potentially malicious activity of changing these
components.

To overcome the security problems of IIoT, several
strategies can be used in IDS. IDS may be integrated with
edge computing or connected to it separately due to the
limited resources of IoT network devices [7]. This is done
by using an artificial intelligence algorithm strategy to
identify common patterns of network activity and identify
data that may be suspected of being a hacking operation.
This strategy increases the accuracy of detecting cyber
intrusions.

Currently, actor critic algorithms are highly used in
detecting cyber intrusions compared to other algorithms.
One of the most popular of these algorithms is the A3C
algorithm [8]. This algorithm, which outperforms other
algorithms, is widely used in intrusion detection in IIoT
environments because it can detect complex or abnormal
intrusions due to its ability to detect rare intrusions in real
time [9].

In summary, the IDS is critical to systems in networks
of the IIoT environment, and the EA3C algorithm can
be developed to protect data and industrial operations
through the use of smart, flexible, and robust IDSs.

1.1. PROBLEM STATEMENT

The rapid expansion of IIoT has significantly increased
their vulnerability to hacking. Current IDSs struggle to
keep pace with the dynamic and complex nature of IIoT
networks. This complexity is exacerbated by the increas-
ing classes of attacks and the difficulty of identifying their
class and dealing with them based on the behavior of
these attacks [10]. Although the existing IDS algorithms,
particularly those based on actor critic algorithms like
A3C, have contributed to improving the classification,
they still face limitations and struggles in terms of slow
convergence, large variation in policy gradients, unstable
updates, and inefficient parameter synchronization [11]..

1.2. MOTIVATION

As IIoT continues to expand, it is critical to develop a
mechanism using artificial intelligence algorithms to de-

tect cyber threats that could disrupt industrial operations
and cause significant economic losses. Traditional IDSs
based on machine learning, deep learning (DL), and rein-
forcement learning face several challenges in adapting to
new and advanced attack patterns, given that these sys-
tems rely on pre-defined features or fixed detection mod-
els. Algorithms based on actor critic provide the ability to
adapt to changes that may occur in the IIoT environment
and their high self-learning capabilities. Among these
algorithms is the A3C algorithm. However, the current
implementation of A3C and its performance limitations
affect its practical usability in IIoT security. These limi-
tations can be improved by improving the extraction of
the most important features using the fuzzy algorithm,
making the training process as stable as possible, and
improving policy updates, which contribute significantly
to detecting attacks and identifying the classes of these
attacks. Therefore, the motivation behind this research
is to develop the EA3C algorithm based on CNN inside
its worker/agent into a more efficient detection system
based on classifying common and rare attack classes
with high Accuracy, Precision, Recall, and F1-score com-
pared to previous, more common studies, such as the
DT, AERL, DDQN, and traditional A3C algorithms in IIoT
environments.

1.3. OBJECTIVES

The main objective of this research is to address the
challenges by leveraging advanced machine learning
techniques and enhancing the A3C framework with a
modified CNN as follows:

· Developing an EA3C Algorithm for enhancing Intru-
sion Detection in IIoT Environments.

· Evaluate the performance of the EA3C algorithm
compared to DT, AERL, DDQN, and traditional A3C using
metrics such as accuracy, recall, precision, and f1-score
of intrusion detection in IIoT environments, to achieve
more secure and resilient IIoT networks.

1.4. CONTRIBUTIONS

This research contributes significantly to the develop-
ment of the field of intrusion detection in IIoT environ-
ments by enhancing the performance of A3C-based sys-
tems. The key contributions are as follows:

· Modified Neural Network Model Architecture:
CNN architecture is introduced to significantly improve
feature representation by extracting high-level spatial
and temporal features from the intrusion detection data,
compared to traditional fully connected A3C networks.
This improvement addresses the limitations of previous
feature extraction models that failed to capture complex
patterns in network traffic.

· Stabilized Training Process: To address issues
of high variance and unstable gradient updates in A3C
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implementations, gradient clipping is incorporated to con-
trol gradient updates, improving training stability and
convergence speed.

. Efficient Parameter Synchronization: The pro-
posed algorithm optimizes parameter synchronization
by implementing efficient copy · operations and sorted
variable lists, which enhance convergence speed and
prevent delays during training.

· Dynamic State Representation: Unlike traditional
A3C, which used fixed input representations, the EA3C
algorithm dynamically reshapes state inputs to ensure
proper compatibility with the CNN layers and policy/value
networks, enabling more efficient policy learning. The
proposed EA3C algorithm is evaluated using the X-IIoTID
dataset, over existing algorithms, including DT, AERL,
DDQN, and traditional A3C, using metrics of accuracy,
precision, recall, and F1-score.

Through these contributions, this research offers a ro-
bust solution for intrusion detection in IIoT environments,
providing faster, more stable, and higher-performing algo-
rithms capable of addressing the evolving and complex
security challenges of modern IIoT networks.

1.5. RESEARCH ORGANIZATION
The research is structured as follows: Section1 intro-
duces the topic and emphasizes the significance of in-
trusion detection in IIoT networks. Section 2 provides
a background, discussing existing IDS algorithms, the
attacks and challenges in IIoT environments, and related
works. Section 3 presents the proposed EA3C algo-
rithm, highlighting its innovations and modifications to
the A3C worker’s neural network. Section 4 outlines the
methodology used to develop and evaluate the EA3C
algorithm, detailing the experimental setup, data prepro-
cessing, and performance metrics evaluation. Section
5 presents the results and discusses the performance
of EA3C in comparison to other algorithms, demonstrat-
ing its effectiveness. Finally, Section 6 concludes the
research, summarizing the key findings and proposing
future directions for further research.

2. BACKGROUND
In this section, the main concepts that support the
methodology of this research will be discussed, which
are as follows:

2.1. IIOT ATTACKS
Security standards in the IIoT environment are achieved
through the development of effective factors such as net-
work segmentation, upgrading hardware and software,
identifying vulnerability, updating IDS and incident re-
sponse plans, in addition to having a deep understanding
of several classes of major attacks in this environment
and their subclasses, which are mentioned in X-IIoTID

dataset and are as follows:
1. Reconnaissance: It is the first stage of an IIoT

attack, where the attacker uses footprinting or data col-
lection to identify vulnerabilities in the targeted networks
[12]. The subclasses of these attacks are as follows:

• Generic Scanning: where the attacker carefully
searches the targeted network for open ports, ver-
sions of hardware and software in use, and potential
entry points.[13].

• Scanning Vulnerability: which is a scanning process
aimed at finding specific vulnerabilities in systems or
IIoT devices [14].

• Discovering Resources: where attackers search for
IIoT network resources. These resources include the
classes of applications used, open ports, application
interfaces that are usually unprotected, or improperly
configured settings [15].

• Fuzzing which is defined as detecting vulnerabilities
by triggering unexpected behaviors, such as sending
unexpected or incorrect data to IIoT devices to test
their response [16].

2. Weaponization: This is the preparation to exploit any
vulnerabilities discovered through reconnaissance in the
IIoT infrastructure [17]. These attacks include the use of
the following subclasses:

• Brute-force: Attackers often generate a variety of user-
names and passwords to gain unauthorized access
to IIoT devices and systems, but this class requires
more time for high processing [18].

• Dictionary: This type of attack occurs by gaining unau-
thorized access using pre-prepared lists of commonly
used passwords, and it takes less time compared to
the previous class [19].

• Insider Malicious: This attack occurs when an autho-
rized person gains access to IIoT systems or devices
by deliberately using their rights to destroy the system,
steal data, or cause malfunctions [20].

3. Exploitation: This is done by interfering with unautho-
rized access operations by exploiting the vulnerabilities
discovered in the IIoT environment[14] , which are as
follows:

· Reverse Shell: Attackers create a reverse shell by
exploiting flaws in IoT systems or devices due to delays
in updating or upgrading them [21].

· Man-in-the-Middle (MitM): This includes the pres-
ence of attackers who intercept communications and
change or eavesdrop on data in the communication chan-
nel between devices and applications of IIoT [22].

4. Lateral movement: This is used in a way that
spreads the attack from one hacked system or device
to another within the IIoTs network in an attempt to gain
more control and benefit from the attack on the largest
possible number of systems and devices that can be
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accessed [23]. The following subtypes may be involved
in lateral migration in IIoT attacks:

• Modbus-Register Reading: Attackers are able to ob-
tain sensitive data from IIoT systems or devices by
exploiting weaknesses in the Modbus protocols [24].

• MQTT-Cloud Broker Subscription: One popular proto-
col for Internet of Things (IoT) communication is Mes-
sage Queuing Telemetry Transport (MQTT). By ex-
ploiting vulnerabilities in MQTT communication chan-
nels, attackers can get unauthorized access to IIoT
devices or systems through cloud brokers [25].

• TCP Relay: Intercepting and rerouting TCP communi-
cation traffic between computers or IIoT devices is the
tactic used in attacks utilizing Transmission Control
Protocol (TCP ) relays [26].

5. Command and control (C&C): Attackers establish a
centralized infrastructure at the C&C stage in order to
remotely control attacked IIoT devices or systems [27].

6. Exfiltration: It refers to the illegal removal or trans-
fer of sensitive data from compromised IIoT systems or
devices to other locations under the attackers’ authority
[28].

7.Tampering attack: It is the attack that modifies IIoT
systems or data without authorization [21]. IIoT attacks
may involve the following types of manipulation:

• False Data Injection: Attackers may alter or introduce
fake data into IIoT systems.

• Fake Notifications: Attackers try to fool IIoT operators
or users by sending fake messages or alarms.

8. Crypto ransomware: It is a type of malware that
encrypts crucial information or systems, rendering them
unreadable to everyone. Hackers have effectively taken
control of the IIoT systems or data [29].

9. RDoS: Attackers are those who employ ran-
somware to prevent distributed denial-of-service (DDoS)
attacks against IIoT networks or systems [30].

2.2. IIoT-IDS CHALLENGES
Researchers interested in insecurity in industrial fields
have provided possible answers to these problems in
recently published studies. Security and privacy con-
cerns are the primary issues that are always taken
into consideration[31] . Developing security algorithms,
advanced connections, automation, and data-driven
decision-making is made possible by IIoT networks at the
edge of computing, which have revolutionized industrial
sectors [1]. Predictive maintenance, enhanced efficiency,
and process optimization are made possible by these
networks, which are made up of networked machinery,
devices, and sensors that collect and share enormous
volumes of data. Despite the spread of IIoT networks,
several security obstacles have arisen, requiring signifi-
cant processing time and high power consumption. The

first of these obstacles is the need to detect intrusions
in the network at the edge computing level due to the
dispersed and dynamic nature of this network, which
consists of many interconnected devices and sensors.
This network usually extends over a vast area and works
in a variety of industrial environments, making the deploy-
ment of these centralized IDS represents a challenge
[32]. Another obstacle, which is the immediate detection
of intrusion in real time, lies in the difficulty of dealing
with the enormous volume and speed of data in the IIoT
network. Thus, it has become necessary to use IDSs, as
it is capable of managing the continuous flow of data[33]
. The last obstacle encountered in intrusion detection is
that different manufacturing companies produce multiple
devices and operate on various systems and communica-
tion protocols. Thus, IDSs face a challenge in managing
and monitoring these components to ensure compatibility
and interoperability [34].

Therefore, IDSs must be flexible enough to withstand
these obstacles through using modern algorithms, such
as ML, DL, DRL, and Actor Critic, that are applied in
IDSs connected to edge computing to ensure their cen-
tralization and rapid response.

2.3. DEEP REINFORCEMENT LEARNING

DRL relies primarily on DL models, which contribute to
RL to help agents learn to solve sequential decision-
making problems. In RL, an agent interacts with its envi-
ronment by maximizing the cumulative reward value by
correctly predicting the input states during training [35].
The Markov decision process (MDP) is a fundamental
part of the concept of RL, whose learning parameters
are expressed as (S, A, P, R,γ), where (S) is the set of
potential states in IIoT network traffic, (A) is the set of ac-
cessible actions, γ(gamma) is the discount factor, and (s)
to state (s’) is the transition probability state. Therefore,
when taking action (a), it is expressed as P(s’|s, a)[36].
On the other hand, the future rewards R (s, a, s’) refer
to the immediate reward received by transitioning from
state (s) to state (s’) through the selection of action (a).
The agents evaluate the probability of acting in a specific
state (s) by learning a policy function π(a|s) over the pos-
sible actions. The agents/workers interact with the IIoT
environment by receiving rewards and new coefficients
to find the best coefficients of algorithms by maximizing
rewards. At the same time, the available information can
be used to achieve this using different strategies, such as
softmax action selection or ε-greedy, which can also be
applied. The sum of the discounted incentives obtained
from a starting state (s) is used to compute the return.

Gt = Rt+1 +γRt+2 +γ2Rt+3 + . . . =
∞

∑
k=0

γkR(t+k+1) (1)

Rt+1, Rt+2, Rt+3,..., are the rewards at subsequent
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time steps, and Gt is the total of future rewards obtained
starting at time step t+1 that weighs the importance of
immediate versus future rewards. To find the cumulative
value of the awards over time, the formula sums up the
prizes and multiplies each by the corresponding discount
factor γk. This enables decision-makers in a context in-
cluding RL to consider both potential rewards in the future
and current rewards. To maximize the expected return,
the agent adjusts the parameters of its policy. Stochastic
gradient descent (SGD) or its derivatives, like Adam, are
gradient-based optimization techniques that are used
to update the parameters of the deep neural network
(DNN) depending on the gradients of the objective func-
tion with respect to the parameters[37]. Q-learning and
Deep Q-Networks (DQN), for example, are value-based
algorithms that learn to figure out state-action values and
edit policies appropriately.

2.4. EXISTING A3C ALGORITHMS

Several essential components make up the standard
A3C as shown in Fig.1. With numerous worker threads
running concurrently and interacting with various in-
stances of the environment and neural network algorithm,
it employs asynchronous training [38].

Figure 1. The conventional A3C diagram

For the actor and critic structures, the majority of re-
cent work has used simple neural networks (NNs). Ex-
ploration and experience gathering become more effi-
cient as a result. Moreover, A3C employs an actor-critic,
where the actor component is a policy network that se-
lects actions based on the current state [39]. The critical
component, which is represented by a value network, de-
termines the expected return from the current situation.
Additionally, A3C offers advantage estimate [40], which
improves training stability by comparing the benefit of

doing a particular action in a state to the state’s average
action value. Lastly, the mean squared error loss and the
policy gradient technique are used to update values and
policies, respectively.

Synchronized updates are sometimes performed by
averaging gradients from several worker threads to up-
date common algorithm parameters in order to guaran-
tee consistency and reduce conflicts. When combined,
these components enable A3C to effectively train DRL
agents in complex environments with high-dimensional
state spaces.

2.5. (X-IIoTID) DATASET

The X-IIoTID dataset is a meticulously created simulation
of current attackers’ methods, techniques, and strategies
as well as the actual operations of IIoT systems.

Some examples of these activities include the interac-
tion of industrial devices (sensors, actuators, controllers,
and traffic from edge, mobile, and cloud sources). The
dataset reflects the behaviors of new communication
protocols (e.g., MQTT, CoAP, WebSocket), the different
connection patterns (Machine-to-Machine, Human-to-
Machine, and Machine-to-Human), and large amounts
of network traffic and system events. This is due to its
ability to adjust to the heterogeneous nature and inter-
operability requirements of IIoT systems, in addition to
its features that are independent of IIoT devices and
networks.

The final X-IIoTID dataset has 820,834 cases with
68 characteristics (normal and attack, normal and sub-
category attack, and normal and sub-sub-category at-
tack encompassing three label levels) (421,417 obser-
vations/instances for normal and 399,417 for attacks).
[41].

2.6. RELATED WORK

In recent years, several studies have focused on us-
ing (DL) and RL for IDS, each proposing different ap-
proaches to address challenges like anomaly detection
and attack classification. Shone et al. [42]proposed
a DL-based intrusion detection model that employs an
unsupervised feature learning approach through a non-
symmetric deep autoencoder (NDAE). Their model is
built on TensorFlow with GPU acceleration to utilize a
stacked NDAE-based classification algorithm for obtain-
ing effective performance on the KDD Cup’99 and NSL-
KDD datasets.

Shone et al. [43] also investigated various ML algo-
rithms for attack classification, including DT, Naive Bayes
(NB), K-Nearest Neighbors (KNN), Support Vector Ma-
chine (SVM), and Logistic Regression (LR), alongside DL
techniques like Gated Recurrent Units (GRU) and DNN.
Their results confirmed that the DT algorithm showed
better performance results compared to other algorithms
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Table 1. Related Works Summary
Ref. Publisher Approach Work Points Limitations Dataset
[42] IEEE transac-

tions on emerg-
ing topics in
computational
intelligence

Nonsymmetric
deep autoencoder
(NDAE) for unsu-
pervised feature
learning

- Using simple applica-
tions
- Efficient and steady
sampling

- Unsuitable for a
stochastic environment

KDDCup 99

[43] IEEE Internet
of Things Jour-
nal

DT - It is simple and very fast
to get the prediction re-
sults

- The performance val-
ues decrease with an in-
creasing number of clas-
sifications

X-IIoTID

[44] IEEE Access DNN - Used for simple applica-
tions
- Enhanced performance
compared to some super-
vised and unsupervised
methods.

-Unsuitable for complex
applications
- Having issues in the real
environment

KDDCup 99

[45] IEEE Access Recurrent Neural
Network (RNN)

- For simple applications. - Unsuitable for a
stochastic environment
- Having limitations in the
acceleration process

NSL-KDD

[46] IEEE Access Novel Two-Stage
DL (TSDL) model
based on a stacked
auto-encoder with
a soft-max classi-
fier

- Used for simple applica-
tions
- Efficient and steady
sampling

- Unsuitable for a
stochastic environment
- Unsuitable for complex
applications

KDD99 and UNSW-
NB15

[47] Wireless Com-
munications
and Mobile
Computing

RL to improve the
decision-making
ability

- Suitable for both consis-
tent and stochastic appli-
cations

- It is considered an
unstable algorithm and
takes more time to pro-
cess

Dataset of the nat-
ural gas pipeline
transportation net-
work

[48] Computers Q-learning
based on rein-
forcement learning
with a deep feed-
forward neural
network method

- For normal applications
- Enhanced performance
by taking advantage of
value-based and policy-
based methods

- Unsuitable for a
stochastic environment
-It has a lower accuracy
value than actor critic al-
gorithm.

NSL-KDD

[9] Entropy Adaptable A3C
algorithm for rein-
forcement learning
with CNN

- Suitable for complex ap-
plications

- It is too complex and
has processing overhead

NSL-KDD, AWID,
and CICIDS-2017,
DoHBrw-2020

through training and testing it in different scenarios.

Vinayakumar et al. [44]built a DNN model for learning
through hidden layers to extract meaningful features and
optimize network topology and hyperparameters using
the KDD Cup 99 dataset. This model represents high-
dimensional features from network data by transferring it
to the IDS.

Yin et al. [45] explored the use of Recurrent Neural
Networks (RNN) for intrusion detection in IDS, which
showed strong performance in detecting various attack
patterns in an IIoT environment. Their model empha-
sized the temporal dependencies of data flow within the
network, which facilitated the detection of attacks.

Khan et al. [46] proposed a two-stage DL approach
for network intrusion detection, which involves a stacked
autoencoder layer with a softmax layer for classification.
Based on a probability score, their model classifies data
from the normal and abnormal classes. The UNSW-
NB15 and KDD99 datasets were used for testing to prove
the effectiveness of this model.

Tharewal et al. [47] implemented a DRL algorithm to
connect intrusion detection in IIoT networks. This algo-
rithm has proven its ability to transform large-scale input
data into abstract representations, which increases the
algorithm’s ability to make decisions without any external
guidance.

Alavizadeh et al [48] combined a deep Q-learning-
based RL approach with a deep feed-forward neural net-
work for network intrusion detection. Thus, their model
automatically identifies various classes of intrusions and
continually improves the detection performance. The
NSL-KDD dataset was used to train, test, and validate
the model.

Zhou et al.[9] applied a convolutional network for
anomaly detection with an attention mechanism for distin-
guishing between anomalies to be used as an adaptive
actor-critic model. The model outperforms traditional
methods on benchmark datasets like NSL-KDD, AWID,
CICIDS-2017, and DoHBrw-2020.

Caminero et al. [49] presented an RL approach for
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IDS based on adversarial environments. Their AERL
algorithm simulates an adversarial setup where the clas-
sifier, as the primary agent, continuously faces more
challenging predictions posed by the environment, ulti-
mately improving the classifier’s robustness.

The studies summarized above highlight the diverse
methods employed in the field of intrusion detection, with
advancements in ML, DL, and RL techniques such as
DT, AERL, DDQN, and traditional A3C, aiming at im-
proving performance and adaptability in detecting and
mitigating network attacks. The related works, which
were previously mentioned, are summarized in Table 1.

3. PROPOSED EA3C
The EA3C framework shown in Fig.2 uses a modified
CNN that replaces the neural network in the worker of the
conventional A3C algorithm. The modified CNN model,

Figure 2. The modification of EA3C workers by using CNN

as shown in Fig.3, is used to automatically extract dis-
criminative characteristics from the X-IIoTID dataset. To
find patterns and relevant information specific to IIoT in-
trusion detection tasks, convolutional layers extract spa-
tially local features. Through the use of strategies such
as max pooling, the pooling layers reduce the dimen-
sionality of the learned features, highlighting the most
crucial components and removing irrelevant data. This
enhances the algorithm’s ability to identify incursions
across a lot of settings.

The model first checks that X is a 2-dimensional ten-
sor, reshaping it to include a singleton dimension. Then,
it builds a network: convolutional layers with filters f =
32, kernel size k = 3, padding p = 1, ReLU activations,
and batch normalization, followed by max pooling layers
with a pool size ps = 2 and strides st = 2. The output is

then flattened and passed through two fully connected,
or dense, layers with ReLU activations and batch normal-
ization. Added to this is a dropout layer for regularization
with the dropout rate r =0.5. Finally, the final network
output is made from the last dense layer, with units u =
256. Convolutional layers capture local patterns in the

Figure 3. The modified CNN model in the EA3C worker

network traffic that help to understand network behav-
iors, while max-pooling layers reduce size and enforce
spatial hierarchies between significant features [50]. This
maintains the stability of training while applying batch
normalization. Extracted features are prepared for fully
connected layers using the flattening layer that subse-
quently learns those more complex feature relationships
to efficiently classify intrusions. Dropout regularization
is applied to avoid overfitting, thus ensuring the model
is generalized well. This kind of architecture is good
for identifying intrusion patterns in time series data, like
network traffic, which leads to good accuracy and fast
computing. With two convolutional layers, two pooling
layers, one flatten layer, and two fully connected layers,
the CNN can handle the input data effectively. High-
dimensional and complicated features that are extracted
from IIoT settings are often the input data.

Traditional A3C implementations often experience gra-
dient explosion due to high-variance network updates,
making training unstable where its rule is θ′ = θ − α∇θ L
[51]. EA3C expresses gradient clipping at a global norm
of 5.0, ensuring more stable updates. The updated rule
is given by Eq. 2:

θ′ = θ − α · clip (∇θ L,−τ, τ) (2)

where θ represents the model parameters, α is the
learning rate, ∇θ L is the gradient of the loss function, and
τ=5.0 ensures stable updates by preventing excessively
large gradient steps. The clip scales the gradient ∇θ L
by dividing it by a factor of 1 + ∥∇θ L∥2, which helps sta-
bilize learning by preventing excessively large updates.
This technique can improve convergence and robust-
ness, especially in RL and DL models. In traditional A3C
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[52], policy updates are commonly derived using policy
gradient theory as described in Eq.3

∇θ J(θ) = E

[
T

∑
t=0

∇θ log πθ (at | st) (Rt − V (st))

]
(3)

The gradient update is modified with additional con-
straints to stabilize training according to Eq.4

∇θ J(θ) = E

[
T

∑
t=0

∇θ log πθ (at | st) (Rt − V (st))

]
+ λ∇θΩ(θ) (4)

This equation represents the policy gradient in actor-
critic methods. The term ∇θ J(θ) denotes the gradient of
the objective function

(Jθ) concerning policy parameters θ. The expectation
E[. ] is taken over trajectories generated by the policy
πθ. The summation from t = 0 to T accounts for all
time steps in an episode. The term ∇θ log πθ(at|st)

represents the gradient of the log probability of taking
action at state st under policy πθ, which helps to adjust
the policy toward better actions. The advantage function
(Rt −V(st)) measures how much better the actual return
Rt is compared to the estimated value function V(st),
guiding the policy update. The last term, λ∇θΩθ, is a
regularization term controlled by λ to prevent overfitting
and ensure smooth policy updates.

Step sizes are dynamically adjusted in EA3C to opti-
mize learning efficiency, ensuring that state-action rep-
resentations remain valid. This adaptive mechanism
enhances exploration and improves sample efficiency,
leading to more robust policy learning.

The updated value loss function LV used in EA3C is
expressed in Eq.6, where the first term is

Lv =
T

∑
t=0

(Rt − V (st))
2 (5)

Eq.5 is used in all actor critic methods [53], sums
over all time steps t in an episode, and calculates the
squared difference between the estimated return reward
Rt (computed via bootstrapping method) and the value
function V (st), which predicts the expected future reward
from state st. This term ensures that the critic (value
function) learns accurate state-value estimates. The
second term, as in Eq.6, β∥θ∥2, is an L2 regularization
term weighted by β, which is added to the value loss
equation of EA3C, and helps to prevent overfitting by
penalizing large policy parameter θ values. This term
ensures smoother updates and better generalization.

Lv =
T

∑
t=0

(Rt − V (st))
2 + β∥θ∥2 (6)

Each worker thread interacts with the environment
autonomously, adhering to a set of rules of its own. A

worker gathers environmental observations at each time
step, inputs them into its CNN, and extracts the current
state representation st. Once the worker completes a
predetermined number of time steps, they create experi-
ences in the form of triples (st, at, rt), representing state,
action, and reward. These interactions are kept in a com-
mon replay buffer for further use. Algorithm 1 gives the
optimization of policy and value functions in the EA3C
worker, which includes entropy regularization for better
exploration. It defines all this in advance: states, targets,
and actions, and then some network parameters. It also
defines how many possible actions there are and the
dimensionality of the observation space. The states are
normalized and fed into a shared neural network, return-
ing outputs used for both the policy and value networks.
The policy network calculates the probabilities of actions
using a softmax function of a dense layer, and the value
network does the prediction of the value for each state.
Entropy is calculated for the probabilities of actions to
encourage exploration; policy loss is then computed by
combining log-probabilities for the chosen actions with
targets and entropy, modulated by a factor β. The value
loss is the mean squared error between predicted and
actual values. On each iteration, if the training flag is set,
it will update the network parameters using the Adam
optimizer and then proceed until it reaches a maximum
number of iterations. The ε-greedy exploration strategy
is used with a decay to slowly reduce exploration during
training (a very common approach, for which an adaptive
way is proposed to adjust the exploration rate).

This methodology contrasts with conventional A3C
implementations by using more complex network
architectures, entropy-based policy regularization,
and a more sophisticated exploration procedure. This
is designed to increase efficiency in learning and
overall algorithm stability, allowing it to better adapt to
high-dimensional and complex environments with an
increasing number of intrusion classes.

To keep CNN and its local algorithm syn-
chronized, the worker updates its weights and
gradient values regularly. By doing this, the
proposed algorithms are more closely matched
and divergent learning is prevented. This CNN
is modified by an asynchronous algorithm that
periodically samples a batch of experiences
from the replay buffer. The gradients based
on the sample experiences are evaluated by
the worker thread, which subsequently applies
them to the proposed algorithm. The update
of asynchronous processes allows for better
exploration, faster convergence, and simultane-
ous training.
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Algorithm 3.1 Algorithm for policy and value predictions
in EA3C
1: Initialization:
2: s∈RN×F :States, a∈RN :Actions
3: M: Number of possible actions.

4: y ∈ RN : Targets (discounted rewards)
tr∈{True,False}: Flag to add training operations.

5: ε: Exploration rate (for ε-greedy policy)
6: θv , θp // Initialize value and policy weights
7: gstep :=0 and N:=0
8: Normalize Inputs: X := Normalize(s) // Min-Max scaling
9: Nmax : Maximum number of steps per episode
10: β=0.01 // Entropy regularization coefficient
11: γ: Discount factor for reward calculation
12: shared_network_params: Predefined architecture for shared neural network

13: while N< Nmax do
14: # Build the shared CNN architecture:
15: out:=SharedCNN(X)
16: #Policy Network:
17: πs=Dense(out, u=M) // Output size
18: equals number of actions (M)
19: P=softmax(πs +10e−8) // Softmax with numerical stability
20: predP={ πs , P} // Predicted probabilities for actions

21: #Value Network:
22: Vs=Dense(out,u=1) // Predicts state-value (V) for input
23: state
24: Vs ∈RN×1=⇒ Vs ∈RN // Reshaping Vs to match the
25: batch size (N)
26: predV={ Vs } // Predicted value of the current
27: state

28: #Entropy Calculation:
29: H=−∑P·log(P) // Entropy of the policy (measuring
30: exploration)
31: Entropy = mean(H) // Mean entropy over all actions
32:
33: #Policy Loss Calculation:
34: indices={i×M+Ai|i∈{0,1,. . . ,N−1}} // Index of selected actions
35: picked=P[indices] // Probability of selected actions
36: L=−(log(ppicked)·y+β·H) // Combined policy loss with
37: entropy

38:
Lp=∑L // Sum of policy losses for all
steps

39:
40: #Value Loss Calculation:
41: δt = rt + γV(st+1, θv) - V(st ,θv) // the temporal difference (TD)
42: error
43: losses= (δt)2 // Mean squared error for value prediction
44: Lv =∑losses // Sum of value losses over all steps
45:
46: # Total Loss:
47: Ltotal = Lp + Lv // Combined policy and value loss

48:
# Exploration strategy:

49: if random() < ε: // ε-greedy: with probability ε, take random
action

50: a = random_action()
51: else: // Otherwise, take action with the highest probability
52: a = argmax(P)
53:
54: # Apply action and step to the next state:
55: St+1, tr = step(predV, predP)
56:
57: if tr is True and Ltotal > threshold then:
58: optimizer=AdamOptimizer(learning_rate=0.0002)
59: grads,vars={(∇θiLtotal ,θi)|i=1,2,. . . ,n} // Compute
60: gradients of the total loss
61: optimizer.apply_gradients(grads, vars) // Apply policy
62: and value gradients to update the model weights
63: θv :=θv+α∇θvδt // Update model parameters using
64: value gradient descent
65: θp := θp + α ∇` log π(at |st , θp) δt // Update model

66:
parameters using policy gradient descent
gstep := gstep +1 // Increment global step counter

67: end if
68:

69:
N := N + 1 // Increment step count

ε := max(ε_min, ε * decay_rate)
end while

4. METHODOLOGY
The methodology used to develop and evaluate
the proposed EA3C algorithm in this research
for detecting intrusions in the IIoT environment
consists of a set of phases, and each phase
consists of a set of steps. These phases and
their steps, as shown in Fig.4 , start from data
pre-processing and end with performance eval-
uation, which ensures the reliability of its effec-
tiveness in detecting intrusions.

4.1. DATA PREPROCESSING

Data preprocessing is an essential phase in
preparing the dataset for training and testing
the algorithm. This stage includes selecting
a suitable dataset, filtering the data, selecting
the most important features, and handling class
imbalances to ensure optimal performance for
this algorithm.

4.1.1. DATASET SELECTION
The X-IIoTID dataset was selected in this re-
search because it contains traffic data that
is considered relevant to IIoT intrusion de-
tection and is taken from a real-world envi-
ronment, compared to other datasets. This
dataset includes various classes of cyber-
attacks, such as Distributed Denial-of-Service
(DDoS), Denial-of-Service (DoS), Reconnais-
sance attacks, and so on, which makes it more
suitable for performance evaluation of intrusion
detection algorithms.

4.1.2. DATA CLEANING
Several data cleaning steps were performed
in the data preprocessing phase to ensure the
integrity and quality of the dataset:

Handling missing values: Missing data is
compensated with -1 was either removed or
imputed using statistical techniques to avoid
biases in algorithm training.

Outlier detection and removal: The Interquar-
tile Range (IQR) method was used to detect
and eliminate extreme values that could affect
algorithm performance.

Duplicate removal: Redundant records were
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Figure 4. Research Methodology

identified and removed to prevent overfitting
and ensure an unbiased learning process.

4.1.3. FEATURE SELECTION AND ENGI-
NEERING

The 20 most important features are selected
to help EA3C reduce computational costs and
improve algorithm accuracy. The research em-
ployed the following techniques:

Correlation Analysis: Pearson’s correlation
coefficient was used to identify highly correlated
features, eliminating redundancy.

Feature Scaling: Min-Max Scaling was ap-
plied to normalize continuous variables, ensur-
ing a uniform range between 0 and 1.

Categorical Encoding: One-hot encoding
and label encoding were used to convert cat-
egorical variables into a format that the neural
network could process effectively, such as IP
addresses and protocols. Feature Selection:
A Fuzzy algorithm is used to select the best
20 features from the dataset as explained in
Algorithm 2

The process of feature selection begins with
ANOVA F-statistics to evaluate each feature xi
from a dataset. The F-score for xi is computed
as Fi = (Variance Between Classes forxi) / (Vari-
ance Within Classes for xi), yielding a score vec-
tor F=[F1,. . . ,Fn]. These scores are normalized

Algorithm 4.1 Fuzzy System Algorithm for Top 20 Fea-
tures Selection

1: X = [x1 , x2 , ..., xn ] ∈ Rm×n // A matrix of m instances and n features
2: y = [y1 , y2 , ..., ym ]T ∈ Rm // The target vector
3: Fi = σ2 between (Xi)/σ2 within (Xi) // Compute the ANOVA F-score for

each
4: feature F = [F1 , F2 , ..., Fn ] Vector of F-values
5: Qi = min(Fi/ max(F)× 10, 10) // Qi ∈ [0, 10]
6: Rule 1: IF Qi is good THEN Ii is good
7: Rule 2: IF Qi is average THEN Ii is average
8: Rule 3: IF Qi is poor THEN Ii is poor
9: Ii = (

∫ b
a x · µi(x)dx)/(

∫ b
a µi(x)dx) //Compute the crisp output importance

10: I = [I1 , I2 , ..., In ] //The final vector of importance scores
11: // Define the selected top-k features as:
12: TopFeatures = {xj1 , xj2 , ..., xjk } where j1 , ..., jk ∈ argsort(I)[−k :] // Selecting
13: top 20 features):

to [0,10] via Qi, which represents feature qual-
ity. A fuzzy inference system then maps each
Qi to an importance score Ii using rules (e.g.,
"IF quality is good THEN importance is good")
and membership functions ("poor," "average,"
"good"). Mamdani inference with centroid de-
fuzzification computes Ii. Finally, features are
ranked by I=[I1,. . . , In], and the top-k features
(here, k=20) are selected and sorted as the top
20 features as shown in Fig.5.

Figure 5. The best 20 selected features

4.1.4. DATASET SPLITTING
In X-IIoTID dataset, the data has been or-
ganized and distributed based on both high-
level attack classes (10 classes) and their
corresponding detailed sub-classes (19 sub-
classes). Each attack class, such as Recon-
naissance, Weaponization, Exploitation, Lateral
Movement, Command and Control, Exfiltration,
Tampering, CryptoRansomware, and RDoS,
along with the Normal class, was broken down
into its specific sub-attack classes (e.g., Scan-
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Table 2. The distribution of each class in X-IIoTID dataset

No. 10 Classes 19 Sub-Classes Total Training Testing
Samples (70%) (30%)

1 Normal Normal 421,417 295,012 126,405

2 RdoS RDOS 141,261 98,883 42,378

3 Reconnaissance Scanning 52,852 37,000 15,852
vulnerability

4 Generic_scanning 50,277 35,194 15,083
5 BruteForce 47,241 33,068 14,173
6 MQTT_cloud_ 23,524 16,467 7,057

broker_subscription

7
Weaponization

Discovering_resources 23,148 16,203 6,945
8 Exfiltration 22,134 15,494 6,640
9 insider_malicious 17,447 12,213 5,234

10 Exploitation Modbus_register_ 5,953 4,167 1,786
reading

11 False_data_injection 5,094 3,566 1,528

12 Lateral_Movement C&C 2,863 2,004 859
13 Dictionary 2,572 1,800 772
14 TCP Relay 2,119 1,483 636

15 Command_and_Control fuzzing 1,313 919 394

16 Exfiltration Reverse_shell 1,016 711 305

17 Tampering crypto-ransomware 458 321 137
18 MitM 117 82 35

19 CryptoRansomware Fake_notification 28 19 9

Total 823,834 576,684 247,150

ning_vulnerability, BruteForce, Reverse_shell).
The total number of samples for each subclass
was calculated, and then the number of sam-
ples for each class was collected. After that,
the total number for all these classes was de-
termined, and then each class was divided into
70% for training and 30% for testing. This en-
sures a logical distribution for all classes and
then contributes later to the proposed EA3C
algorithm that enhances the reliability of the
performance of classifying common attacks in
the IIoT network.

4.2. EA3C DEVELOPMENT

EA3C development focuses on designing and
implementing the EA3C algorithm to improve
intrusion detection in IIoT environments.

4.2.1. ENHANCED A3C ALGORITHM
The proposed EA3C algorithm is an improved
version of the A3C algorithm, specifically de-
signed to handle the stochastic nature of intru-
sion detection problems. Unlike traditional A3C

algorithms, EA3C introduces architectural mod-
ifications that enhance learning efficiency and
classification accuracy.

4.2.2. EA3C ARCHITECTURE
The EA3C algorithm consists of three main
components:

· Actor Network: It is responsible for policy
learning and intrusion classification.

· Critic Network: It evaluates actions and
provides feedback to refine learning.

· Advantage Function: It helps reduce policy
variance and stabilizes learning.

· To enhance performance, the following mod-
ifications were introduced:

Modified CNN in agent/worker as shown in
Fig.6. This model improves classification ac-
curacy with various optimizations. It consists
of an input layer for raw data, followed by con-
volutional layers that extract hierarchical fea-
tures using techniques including grouped con-
volutions (making deeper networks more effec-
tive), activation functions Leaky ReLU, pool-
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ing layers (reduce spatial dimensions), batch
normalization (stabilizes learning), dropout lay-
ers (prevent overfitting), and fully connected
layers (convert extracted features into predic-
tions using softmax outputs). Optimizations in-
clude advanced loss functions (Cross-Entropy)
and adaptive optimizers (Nadam). · Residual

Figure 6. Modified CNN diagram in A3C agent/worker

Connections: Helps prevent vanishing gradient
issues, ensuring stable training over multiple
layers.

4.2.3. TRAINING PROCESS
The EA3C algorithm was trained in an asyn-
chronous multi-threaded environment, where
multiple workers processed different dataset
batches simultaneously.

Advantage Function optimization: This sta-
bilized action selection, reducing erratic policy
updates.

Adaptive Learning Rate Scheduling: It dy-
namically adjusts the learning rate to prevent
overfitting and enhance generalization.

Parallel Processing: Multiple training threads
(8 Threads) improved computational efficiency
and reduced convergence time.

4.3. PERFORMANCE EVALUATION
Performance evaluation is essential to assess
the effectiveness of the EA3C algorithm com-
pared to baseline models and algorithms. The
evaluation includes classification metrics and
computational efficiency analysis.

4.3.1. METRICS FOR EVALUATION
The effectiveness of the EA3C algorithm in this
research is evaluated using the main perfor-

mance metrics: accuracy, precision, recall, and
F1 score. These metrics provide a comprehen-
sive assessment of the algorithm’s classifica-
tion performance, ensuring a fair assessment
of its ability to correctly identify positive and
negative cases.

4.3.2. COMPARATIVE ANALYSIS
The EA3C model was compared against DT,
AERL, DDQN, and Traditional A3C. EA3C out-
performed all these algorithms, particularly in
detecting underrepresented intrusion classes.
The results showed that EA3C achieved over
98% accuracy, precision, recall, and F1-score.
These results ensure its superior ability to clas-
sify complex IIoT attacks.

5. RESULTS AND DISCUSSION

The EA3C algorithm was developed using Ten-
sorFlow, as is the case with most ML, DL, and
DRL investigations. All tests were conducted
using TensorFlow with GPU support, an AMD
Radeon (TM) R5 M330 GPU running 64-bit
Windows 10, an Intel Core i5 7th Generation
2.70GHz CPU, and 16 GB of RAM. The X-
IIoTID dataset has been used for the evalu-
ations. This dataset is considered a bench-
mark for IIOT-IDS research. Comparing results
and methodologies with earlier research is also
made simpler by using this dataset.

This section makes use of the following pa-
rameters: 1) A True Positive (TP) is attack data
that is correctly classified as an attack. 2) False
Positive (FP): Information that is wrongly clas-
sified as an attack but is regarded as normal.
3) True Negative (TN): Normal data that is cor-
rectly classified as such. 4) A false negative
(FN) is attack data that has been incorrectly
classified as normal. The effectiveness of this
proposed method is evaluated using the Accu-
racy, Precision, Recall, and F1-score criteria.

The accuracy calculates the percentage of
all correctly classified cases, as in Eq 5:

Accuracy =
TP + TN

TP + TN + FP + FN
(7)

The precision is a metric that counts how
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many correct classifications are penalized for
every wrong classification, as in Eq. 6:

Precision =
TP

TP + FP
(8)

The recall calculates the number of accu-
rate categories that are deducted from the total
number of incorrect inputs, as in Eq. 7:

Recall = TP/(TP + FN) (9)

The F1-score (F1) is a derived effectiveness
metric that calculates the harmonic mean of
recall and accuracy, as in Eq. 8:

F1 − score =

2(PrecisionRecall)/(Precision + Recall)
(10)

Table2 presents the average performance
findings, which were trained and tested 100
times for 10 experiments per algorithm. With a
train-test split (70/30 split) for X-IIoTID dataset.
When compared to other algorithms, it is
clear from the table that EA3C algorithm de-
livers improved accuracy, precision, recall, and
F1-score (F1) with increasing the number of
classes. The results presented in this table
highlight the performance of five algorithms,
which are DT, AERL, DDQN, A3C, and EA3C,
across three classification tasks: Binary, 10-
Class, and 19-Class Classification. decreased
in accuracy (99.54%), precision (94.34%), and
recall (94.52%), leading to a decrease in F1
score (94.93%). This indicates that DT strug-
gles to perform as the number of classes in-
creases. The DDQN algorithm performs well
(95.43%), while the AERL algorithm has limi-
tations in complex classification tasks, with an
accuracy of 89.16%.

EA3C demonstrates its robustness and effec-
tiveness in handling complex classification prob-
lems by consistently outperforming all other
models and algorithms on all classification
tasks. A3C also performs exceptionally well,

In the binary classification task, DT achieves
the highest performance (99.57%) across all
metrics, indicating its strong capability in dis-
tinguishing between the two classes. EA3C

follows closely with 98.51%, demonstrating the
advantage of actor cretic algorithms over tradi-
tional DT. A3C (98.01%) and DDQN (98.14%)
also perform well, though slightly below EA3C.
AERL lags with 97.47% accuracy, showing a
noticeable performance gap compared to other
algorithms. The results suggest that EA3C
is highly effective, while DT remains a strong
baseline in binary classification. As the classi-
fication task becomes more complex with 10
classes, the performance of some algorithms
starts to diverge. EA3C outperforms all algo-
rithms with an accuracy of 99.66%, demonstrat-
ing its ability to generalize well to multi-class
problems. A3C follows closely with 99.46%,
while DT, which performed best in binary clas-
sification, drops slightly to 99.56% accuracy,
indicating its relative struggle in handling mul-
tiple classes. DDQN achieved an accuracy of
96.04%, outperforming AERL, which dropped
to 92.86%. This is confirmed by the preci-
sion, recall, and F1 score values. These re-
sults demonstrate that the actor-critical models
(A3C and EA3C) maintain strong performance
compared to AERL, which struggles to adapt
effectively. In the most challenging classifica-
tion task, which includes 19 classes, EA3C’s
superiority is achieved in terms of the highest
accuracy (99.85%), precision (98.60%), recall
(98.58%), and F1 score (98.58%). Also, A3C
followed with an accuracy of 99.71%, maintain-
ing high performance metrics. The DT showed
excellent results in binary and decimal classifi-
cations, with an increasing number of classes,
its performance metrics decreased in accu-
racy (99.54%), precision (94.34%), and recall
(94.52%), leading to a decrease in F1 score
(94.93%). This indicates that DT struggles to
perform as the number of classes increases.
The DDQN algorithm performs well (95.43%),
while the AERL algorithm has limitations in com-
plex classification tasks, with an accuracy of
89.16%. EA3C demonstrates its robustness
and effectiveness in handling complex classifi-
cation problems by consistently outperforming
all other models and algorithms on all classifi-
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Table 3: Performance results (%)

Algorithm Binary Classifications 10 Classifications 19 Classifications
A P R F1 A P R F1 A P R F1

DT 99.57 99.57 99.57 99.57 99.56 97.44 97.34 97.29 99.54 94.34 94.52 94.93
AERL 97.47 97.67 97.46 97.52 92.86 94.65 92.87 93.40 89.16 91.80 89.16 89.90
DDQN 98.14 98.16 98.15 98.15 96.04 95.51 96.05 95.71 95.43 95.28 95.43 95.15
A3C 98.01 98.06 98.01 98.03 99.46 97.36 97.32 97.31 99.71 97.17 97.24 97.16
EA3C 98.51 98.53 98.51 98.51 99.66 98.34 98.34 98.34 99.85 98.60 98.58 98.58

cation tasks. A3C also performs exceptionally
well, particularly in higher-class classifications,
highlighting the effectiveness of RL techniques
in multi-class scenarios. DT, while highly ef-
fective in binary classification, struggles as the
number of classes increases, making it less
suitable for complex tasks. DDQN provides
balanced performance across different classifi-
cation tasks, whereas AERL exhibits the weak-
est results, particularly in multi-class settings.
These results highlight the advantage of actor
critic algorithms such as A3C and EA3C in han-
dling complex, 19-class classification problems.
EA3C’s superior performance indicates that en-
hancing A3C with additional optimizations leads
to improved learning efficiency and general-
ization across diverse classification scenarios.
Fig.7 presents the Receiver Operating Char-
acteristic (ROC) analysis, which visually repre-
sents the trade-off between true positive rate
(sensitivity) and false positive rate for both the
A3C and EA3C algorithms. The ROC curve is a
crucial evaluation tool, as it highlights the classi-
fication performance across different threshold
settings. The results indicate that EA3C out-
performs A3C, with a noticeable improvement
in accuracy from 99.71% to 99.85%. This sug-
gests that EA3C not only achieves higher over-
all accuracy but also demonstrates superior dis-
crimination capability in distinguishing between
different classes. The ROC curve for EA3C is
likely to be closer to the top-left corner, indicat-
ing a higher true positive rate with minimal false
positives. In contrast, A3C, while still achiev-
ing high performance, has a relatively lower
accuracy, suggesting that it may produce more
misclassifications compared to EA3C. The train-
ing performance of EA3C over a 24-hour du-
ration, as illustrated in Fig.8 , demonstrates a

steady and consistent increase in the reward
mean, ultimately peaking at 0.9875. This sus-
tained improvement indicates that EA3C not
only achieves superior learning efficiency but
also maintains stability throughout training. Un-
like the traditional A3C algorithm, which may
experience fluctuations or slower convergence
due to parameter inconsistencies, EA3C ben-
efits from enhanced network synchronization,
ensuring more reliable updates across work-
ers. Additionally, gradient clipping and multi-
step training contribute to a smoother learn-
ing process, preventing instability and reducing
variance. The robust action selection mech-
anism further ensures that decisions remain
well-optimized as training progresses. The in-
creasing reward trend confirms EA3C’s ability
to efficiently explore and exploit the learning en-
vironment, leading to improved long-term per-
formance. This makes EA3C more effective
than the RL algorithm, particularly for complex
classification tasks where stability and conver-
gence speed are critical. The confusion ma-
trix, as shown in Fig.8 , compares the A3C
and EA3C algorithms, with A3C’s results shown
in Fig.8 (chart a) and EA3C’s results in Fig.8
(chart b). The improvement in EA3C’s perfor-
mance is particularly evident in its handling of
less frequent classes, which often pose chal-
lenges for classification models and algorithms
due to data imbalance. In summary, the en-
hancement in EA3C’s performance is attributed
to a well-modified CNN architecture, which ex-
tracts high-level spatial and temporal features,
improving feature representation compared to
traditional fully connected A3C networks. Ef-
ficient parameter synchronization is achieved
through optimized copy operations using sorted
variable lists, ensuring precise weight transfers
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Figure 7. ROC Curve for X-IIoTID 19-Class a) Traditional A3C
b) EA3C

Figure 8. Reward Mean for X-IIoTID 19-Class for A3C and
EA3C

between global and local networks, leading to
faster convergence. Additionally, gradient clip-
ping stabilizes training by controlling gradient
updates, reducing variance in policy gradients,
and preventing dominant classes from dispro-
portionately influencing the algorithm. The in-
put shaping is dynamically applied to all layers
of the CNN, preventing mismatches in the data
distribution across these layers. The use of

Figure 9. Enter Caption

policy and value estimations utilizes adaptive
bootstrap rewards and advantage-based policy
targets, enhancing policy generalization and
accelerating convergence to enhance EA3C
learning. By implementing parallel learning
across different environments in EA3C, learn-
ing is accelerated across different environments
while maintaining learning stability and recog-
nizing different types of imbalanced cyberat-
tacks. This makes this algorithm more effective
for detecting intrusions in IIoT environments.

6. CONCLUSION AND FUTURE WORK

This research addresses the main challenges
facing current IDSs in IIoT and edge comput-
ing networks. These challenges include poor
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intrusion detection performance with increasing
classifications and the small number of class
samples in the database, which negatively im-
pacts the learning process. To overcome these
challenges, the EA3C algorithm is proposed as
an improvement over traditional A3C algorithms
by replacing the traditional neural network with
a modified CNN. This modified CNN consists
of fully connected layers, convolutional layers
used with dropout regularization to improve fea-
ture extraction, and an output layer is added to
generate predictions for intrusion attack classi-
fications. In addition, the optimized equations
are used to calculate the effective synchroniza-
tion parameter, gradient clipping to get stable
training, and adaptive reward handling. This op-
timization significantly increases the algorithm’s
strength and efficiency in learning from imbal-
anced class sets.

The EA3C algorithm was implemented us-
ing the TensorFlow library and then tested us-
ing the X-IIoTID dataset, which is taken from
a real IIoT environment. The results con-
firmed that the EA3C algorithm achieved strong
weighted accuracy, precision, recall, and F1
scores metrics, all exceeding 0.98, compared to
DT, AERL, DDQN, and traditional A3C. These
results make EA3C a more efficient algorithm
for improving network security.

Furthermore, these promising results indi-
cate the potential for more development is re-
quired to improve EA3C performance in de-
tecting zero-day attacks and expand its ability
to handle real-world network traffic challenges.
On the other side, it emphasizes the need to
encourage researchers to explore and develop
more applications of Actor-Critic algorithms in
IDSs to enhance their robustness and scalabil-
ity in dynamic IIoT environments.

———————————————————
——————-
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[22] S. Gönen, M. A. Barişkan, D. Y. Kaplan, et al., “A novel ap-
proach detection for false data injection, and man in the middle
attacks in iot and iiot,” in 2023 IEEE PES GTD International

© 2025 JAST Sana’a University Journal of Applied Sciences and Technology 913

https://journals.su.edu.ye/index.php/jast
https://journals.su.edu.ye/index.php/jast


Abdulssalam M. Khako and Sharaf A. Alhomdy

Conference and Exposition (GTD), (IEEE, 2023), pp. 278–282.
[23] J. Bi, S. He, F. Luo, et al., “Defense of advanced persistent

threat on industrial internet of things with lateral movement
modelling,” IEEE Trans. on Ind. Informatics (2022).

[24] R. Gupta, N. K. Jadav, H. Mankodiya, et al., “Blockchain
and onion-routing-based secure message exchange system for
edge-enabled iiot,” IEEE Trans. on Ind. Informatics 19, 1965–
1976 (2022).

[25] S. N. Firdous, Z. Baig, C. Valli, and A. Ibrahim, “Modelling and
evaluation of malicious attacks against the iot mqtt protocol,”
in 2017 IEEE International Conference on Internet of Things
(iThings), GreenCom, CPSCom, and SmartData, (IEEE, 2017),
pp. 748–755.

[26] M. Al-Hawawreh, E. Sitnikova, and N. Aboutorab, “Asyn-
chronous peer-to-peer federated capability-based targeted ran-
somware detection model for industrial iot,” IEEE Access 9,
148738–148755 (2021).

[27] M. A. Ferrag, O. Friha, D. Hamouda, et al., “Edge-iiotset: A
new comprehensive realistic cyber security dataset of iot and
iiot applications for centralized and federated learning,” IEEE
Access 10, 40281–40306 (2022).

[28] D. Tychalas, A. Keliris, and M. Maniatakos, “Led alert: Supply
chain threats for stealthy data exfiltration in industrial control
systems,” in 2019 IEEE 25th International Symposium on On-
Line Testing and Robust System Design (IOLTS), (IEEE, 2019),
pp. 194–199.

[29] M. Al-Hawawreh, F. D. Hartog, and E. Sitnikova, “Targeted
ransomware: A new cyber threat to edge system of brownfield
industrial internet of things,” IEEE Internet Things J. 6, 7137–
7151 (2019).

[30] H. Mankodiya, N. K. Jadav, S. Tanwar, and R. Gupta, “Deep
learning-based secure machine-to-machine communication in
edge-enabled industrial iot,” in 2022 International Conference
on Computing, Communication, and Intelligent Systems (ICC-
CIS), (IEEE, 2022), pp. 48–53.

[31] F. Thabit, S. Alhomdy, and S. Jagtap, “A new data security
algorithm for the cloud computing based on genetics techniques
and logical-mathematical functions,” Int. J. Intell. Networks 2,
18–33 (2021).

[32] Y. Wu, H.-N. Dai, and H. Wang, “Convergence of blockchain
and edge computing for secure and scalable iiot critical infras-
tructures in industry 4.0,” IEEE Internet Things J. 8, 2300–2317
(2020).

[33] S. Vitturi, C. Zunino, and T. Sauter, “Industrial communication
systems and their future challenges: Next-generation ethernet,
iiot, and 5g,” Proc. IEEE 107, 944–961 (2019).

[34] S. Bhattacharjee, Practical Industrial Internet of Things se-
curity: A practitioner’s guide to securing connected industries
(Packt Publishing Ltd, 2018).

[35] Z. Liu, Q. Liu, L. Wang, et al., “Task-level decision-making
for dynamic and stochastic human-robot collaboration based
on dual agents deep reinforcement learning,” The Int. J. Adv.
Manuf. Technol. 115, 3533–3552 (2021).

[36] M. Natarajan and A. Kolobov, Planning with Markov decision
processes: An AI perspective (Springer Nature, 2022).

[37] W. E. L. Ilboudo, T. Kobayashi, and K. Sugimoto, “Robust

stochastic gradient descent with student-t distribution based
first-order momentum,” IEEE Trans. on Neural Networks Learn.
Syst. 33, 1324–1337 (2020).

[38] S. Ravichandiran, Hands-on meta learning with Python: meta
learning using one-shot learning, MAML, Reptile, and Meta-
SGD with TensorFlow (Packt Publishing Ltd, 2018).

[39] N. D. Nguyen, T. T. Nguyen, P. Vamplew, et al., “A prioritized
objective actor-critic method for deep reinforcement learning,”
Neural Comput. Appl. 33, 10335–10349 (2021).

[40] S. Demir, B. Stappers, K. Kok, and N. G. Paterakis, “Statis-
tical arbitrage trading on the intraday market using the asyn-
chronous advantage actor–critic method,” Appl. Energy 314,
118912 (2022).

[41] P. Jayalaxmi, R. Saha, G. Kumar, et al., “Pignus: A deep
learning model for ids in industrial internet-of-things,” Comput.
& Secur. p. 103315 (2023).

[42] N. Shone, T. N. Ngoc, V. D. Phai, and Q. Shi, “A deep learning
approach to network intrusion detection,” IEEE Trans. on Emerg.
Top. Comput. Intell. 2, 41–50 (2018).

[43] M. Al-Hawawreh, E. Sitnikova, and N. Aboutorab, “X-iiotid: A
connectivity-agnostic and device-agnostic intrusion data set for
industrial internet of things,” IEEE Internet Things J. 9, 3962–
3977 (2021).

[44] R. Vinayakumar, M. Alazab, K. Soman, et al., “Deep learn-
ing approach for intelligent intrusion detection system,” IEEE
Access 7, 41525–41550 (2019).

[45] C. Yin, Y. Zhu, J. Fei, and X. He, “A deep learning approach
for intrusion detection using recurrent neural networks,” IEEE
Access 5, 21954–21961 (2017).

[46] F. A. Khan, A. Gumaei, A. Derhab, and A. Hussain, “A novel
two-stage deep learning model for efficient network intrusion
detection,” IEEE Access 7, 30373–30385 (2019).

[47] S. Tharewal, M. W. Ashfaque, S. S. Banu, et al., “Intrusion
detection system for industrial internet of things based on deep
reinforcement learning,” Wirel. Commun. Mob. Comput. 2022,
1–8 (2022).

[48] H. Alavizadeh, H. Alavizadeh, and J. Jang-Jaccard, “Deep
q-learning based reinforcement learning approach for network
intrusion detection,” Computers 11, 41 (2022).

[49] G. Caminero, M. Lopez-Martin, and B. Carro, “Adversarial
environment reinforcement learning algorithm for intrusion de-
tection,” Comput. Networks 159, 96–109 (2019).

[50] A. Zafar, M. Aamir, N. M. Nawi, et al., “A comparison of pooling
methods for convolutional neural networks,” Appl. Sci. 12, 8643
(2022).

[51] V. Mnih, A. P. Badia, M. Mirza, et al., “Asynchronous methods
for deep reinforcement learning,” in International Conference
on Machine Learning, (PMLR, 2016), pp. 1928–1937.

[52] A. Agarwal, S. M. Kakade, J. D. Lee, and G. Mahajan, “Op-
timality and approximation with policy gradient methods in
markov decision processes,” in Conference on Learning Theory,
(PMLR, 2020), pp. 64–66.

[53] L. Li, D. Li, T. Song, and X. Xu, “Actor–critic learning con-
trol with regularization and feature selection in policy gradient
estimation,” IEEE Trans. on Neural Networks Learn. Syst. 32,
1217–1227 (2020).

© 2025 JAST Sana’a University Journal of Applied Sciences and Technology 914

https://journals.su.edu.ye/index.php/jast
https://journals.su.edu.ye/index.php/jast

	INTRODUCTION:
	PROBLEM STATEMENT
	MOTIVATION
	OBJECTIVES
	CONTRIBUTIONS
	RESEARCH ORGANIZATION

	BACKGROUND
	IIOT ATTACKS
	IIoT-IDS CHALLENGES
	DEEP REINFORCEMENT LEARNING
	EXISTING A3C ALGORITHMS
	(X-IIoTID) DATASET
	RELATED WORK

	PROPOSED EA3C
	METHODOLOGY
	DATA PREPROCESSING
	DATASET SELECTION
	DATA CLEANING
	FEATURE SELECTION AND ENGINEERING
	DATASET SPLITTING

	EA3C DEVELOPMENT
	ENHANCED A3C ALGORITHM
	EA3C ARCHITECTURE
	TRAINING PROCESS

	PERFORMANCE EVALUATION
	METRICS FOR EVALUATION
	COMPARATIVE ANALYSIS


	RESULTS AND DISCUSSION
	CONCLUSION AND FUTURE WORK

