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Abstract
The Article discusses neutrosophic left/right cosets, their properties, neutrosophic normal subgroups, and neutro-
sophic quotient groups with some theories and examples. The concept of Neutrosophic Groups was introduced
by Kandasamy and Smarandache in their work in 2006 as part of a broader field of research in neutrosophy.
Neutrosophic Groups are defined by classical NeutroAxioms according to the Neutrosophic Set theory, which
has type-1, The paper explores various structures related to Neutrosophic Groups, including examples of neu-
trosophic groups, neutrosophic left/right cosets, neutrosophic normal subgroups, Neutrosophic Lagrange’s theo-
rem, quotient groups, and their properties, several results of the theorems, and examples are demonstrated with
Gt

1 [I ].
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1. INTRODUCTION
Neutrosophic science is a modern branch of mathematics
that was born in the last three decades, approximately
by Smarandache. He developed the concept of degree
membership function from the intuitionistic fuzzy set into a
neutrosophic set. For a summary of the development of
the neutrosophic and plithogenic literature theories, we
recommend referring to a recent paper entitled " Three
Decades of Neutrosophic and Plithogenic Theories with
their Applications (1995 - 2024)." in [1]. The neutrosophic
group theory appeared for the first time in 2006 by
Kandasamy and Smarandache as an extension of classical
group theory in [2], and [3] respectively. At different and
successive periods, another group of researchers joined
to study the neutrosophic groups as follows: in 2012,
Agboola, Akwu, and Oyebo in their article Neutrosophic
groups and subgroups in [4]. In 2019, Abobala, Hatip,
and Alhamido published a contribution to neutrosophic
groups in [5]. In 2020, Agboola presented the article
Introduction to Neutrosophic Groups in [6]. In 2021, Rozina
published a review study on neutrosophic groups and

their generalizations in [7]. In 2024, Al-Odhari wrote the
axiomatic neutrosophic groups and neutrosophic subgroups
for the axiomatic neutrosophic groups in [8], and [9] and
another humble contribution to neutrosophic linear algebra
in [10], and [11]. Moreover, the author asks himself if there
is a theory of neutrosophic sets similar to the theory of
traditional or classical set theory. To answer this question,
we established a new foundation of the neutrosophic set
theory of three types in [12–17]. This work is being carried
out in parallel with work on the theory of nitrosophic
rings in [18–20]. This article presents neutrosophic cosets,
neutrosophic normal subgroups, and neutrosophic quotient
groups with their properties.

2. Neutrosophic Groups and Neutrosophic Subgroups
According to Neutrosophic Set Theory of Gt

1 [I ]

In this section, we presented the neutrosophic binary
operations on neutrosophic sets of three types with their
properties, and I will rethink neutrosophic groups according
to the classification of neutrosophic sets of three types,
and using the symbolization of them, such as our work in
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[12], [17], and [13]. The concept of a neutrosophic binary
operation is very important in neutrosophic abstract algebra
and other structures of neutrosophic mathematics. So, I will
define the neutrosophic binary operations associated with
a neutrosophic set of three types related to neutrosophic
groups and examine their basic properties. Moreover,
I introduce some examples of neutrosophic groups and
neutrosophic subgroups.

Definition 2.1[12] Let G̸=∅ ⊂ U be a nonempty
classical set, then:

1. Gt
1 [I ] ={g1+g2I :h1,h2∈G} is a neutrosophic set of

type-1,
2. Gt

2 [I ] = {gI∪ {g} :g∈G} is a neutrosophic set of type-2,
3. Gt

3 [I ] ={ (g1+g2I)∪{g1}:g1, g2∈G} is a neutrosophic
set of type-3, where I is an indeterminacy.

The perception of the neutrosophic set of type one
Gt

1 [I ] . It goes back to Kandasamy and Smarandache in
[2, 3], while the neutrosophic set of type three, we propose
to treat it with the classical set G, when G does not
contain zero. However, we have proposed a perception of a
neutrosophic set of the second type, some of the concepts
related to which were studied in [12–17]. It may also
allow for the construction of some neutrosophic algebraic
properties. Of course, one can propose the neutrosophic set
using the concept of indeterminacy I, where I2=I, 0.I= 0,
and 1.I= 1.

Definition 2.2 [2]Let (G, ∗) be any group, and
⟨G∪I⟩ is given by:

⟨G∪I⟩={a+bI :a, b ∈G}.

Then the neutrosophic algebra structure N(G) =

{⟨G∪I⟩ , ∗} is called the neutrosophic group, which is
generated by I and G under ∗.

Theorem 2.1[2]Let(G, ∗) be a group,
N(G) = {⟨G ∪ I⟩, ∗} be the neutrosophic group,
then:N (G) . In general, it is not a group, and N(G) always
contains a group.

In the remainder of this section, we will review and
examine previous work on the neutrosophic group in [8,
9] and its relationship to the work of the nitrosophic
sets of three types in [12–17]. To improve this paper in
a way that serves the community of neutrosophic knowledge.

Definition 2.3 [8] Let G ̸=∅ ⊂ U be a nonempty
classical set, and
Gt

1 [I ] = {a+ bI : a, b ∈ G} is a neutrosophic set of
type-1. Consider ∗ is a Neutrosophic binary operation on
Gt

1 [I ] . Then the nautrosophic pair
〈
Gt

1 [I ] , ∗
〉

is called the
neutrosophic group, which is generated by I if it satisfies
the axiomatic conditions of a group:
NG1: For all x , y and z ∈ N (G) , (x ∗ y) ∗ z = x ∗ (y ∗ z)

" associative law";
NG2: There exists eN = e + eI ∈ N(G) such that
for all x ∗eN= x =eN∗x” existence of an identity" and;
NG3: For all x ∈ N (G) , there exists y ∈ N (G) such
that x ∗ y =eN= y ∗ x" existence of inverse ". Thus,
a neutrosophic group is a neutrosophic mathematical
system N(G) =

〈
Gt

1 [I ] , ∗
〉

satisfying the axioms NG1 to
NG3. Otherwise, it is called a neutrosophic algebra structure.

Observations. Here, we modified Definition 1.3
in[8]. This means that one can be perceptive and try to
define a binary operation on Gt

1 [I ] and check Defintion 1.3.
Let us claim that Definition 1.3 still works when replacing
Gt

1 [I ] by Gt
2 [I ] or Gt

3 [I ] . We recall that Gt
1 [I ] = Gt

3 [I ]

iff G contains zero [12].

Theorem 2.2 If (G, ∗) is a classical group, then(
Gt

1 [I ] , ∗
)

is a neutrosophic group generated by I from G

as a neutrosophic set of type-1 under the same operation ∗.

Proof. Assume that x, y, z ∈ Gt
1 [I ] . To check

Definition 1.3.

1. Consider x, y ∈ Gt
1 [I ] =⇒ ∃x1,x2, y1, y2 ∈ G and

indeterminacy I such that x = x1 + x2I and y =

y1 + y2I

=⇒ ∃x1 y1,x2y2 ∈ G and indeterminacy I such that
xy = x1y1 + x2y2I

=⇒ xy ∈ Gt
1 [I ], so, ∗ is a closure operation on Gt

1 [I ] .
2. Consider x, y, z ∈ Gt

1 [I ] =⇒
∃ (x1y1) , z1, (x2y2) , z2 ∈ G and indeterminacy I such
that (xy) = (x1y1) + (x2y2) I, and z = z1 + z2I

=⇒ ∃ (x1y1) z1, (x2y2) z2 ∈ G and indeterminacy I
such that

(xy) z = (x1y1) z1 + (x2y2) z2I

=⇒ (xy) z = (x1y1) z1 + (x2y2) z2I ∈ Gt
1 [I ]

=⇒ (xy) z = x (yz) = x1 (y1z1)︸ ︷︷ ︸
∈G

+ x2 (y2z2)︸ ︷︷ ︸
∈G

I ∈

Gt
1 [I ]. Hence, ∗ is an associative operation on Gt

1 [I ] .
3. ∃eN ∈ Gt

1 [I ] such that for all x ∈ Gt
1 [I ] =⇒

∃x1,x2, e1, e2 ∈ G, and indeterminacy I such that

eN ∗ x = (e1 + e2I) ∗ (x1 + x2I)

= (e1 ∗ x1) + (e2∗x2) I

= x1 + x2I = x, and

x ∗ eN = (x1 + x2I) ∗ (e1 + e2I)

= (x1 ∗ e1) + (x2∗e2) I

= x1 + x2I = x. Since the identity
is unique in G , we have e1 = e2.

4. ∀ x ∈ Gt
1 [I ] =⇒ ∃x1,x2 ∈ G and indeterminacy I

such that x = x1 + x2I =⇒ ∃x1−1,x2−1 ∈ G and
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indeterminacy I such that

x−1 = x1
−1 + x2

−1I ∈ Gt
1 [I ]

=⇒ ∃x1x1
−1 = e1,x2x2

−1 = e2 ∈ G and
indeterminacy I such that

xx−1 = x1x1
−1 +x2x2

−1I = e1 + e2I = eN ∈ Gt
1 [I ] .

Corollary 2.3 If (G, ∗) is an abelian group, then(
Gt

1 [I ] , ∗
)

is a neutrosophic abelian group generated by
I and G as a neutrosophic set of type-1 under the same
operation ∗.

Proof. It follows directly from Theorem 1.2.

Theorem 2.4 Let H be a subgroup of a group G,
then Ht

1 [I ] is a neutrosophic subgroup of Gt
1 [I ] under the

same operation, where Ht
1 [I ] is generated by I by H, and

Gt
1 [I ] is generated by G.

Proof. Suppose that H ≼ G, to show that
Ht

1 [I ] ≼︸︷︷︸
N

Gt
1 [I ] .

Let x, y ∈ Ht
i [I ] =⇒ ∃x1,x2, y1, y2 ∈ H and

indeterminacy I such that
x = x1 + x2I and y = y1 + y2I

=⇒ ∃x1,x2, y1−1, y2−1 ∈ H and indeterminacy I such
that

x = x1 + x2I and y−1 = y1−1 + y2−1I

=⇒ ∃x1 y1−1,x2y2−1 ∈ H and indeterminacy I such
that x y−1 = x1y1−1 + x2y2−1I

=⇒ x y−1∈ Ht
i [I ] =⇒ Ht

1 [I ] ≼︸︷︷︸
N

Gt
1 [I ]. By Theorem

3.3 in [9].

Example 2.1 Let Z = {0, ±1, ±2, . . . } be the set
of integer numbers. Then the neutrosophic integers of
type-1 is given by:

Zt
1[I ] =


0, 0 ± I, 0 ± 2I, 0 ± 3I, · · ·

±1, ±1 ± I, ±1 ± 2I, ±1 ± 3I, · · ·
± 2, ±2 ± I ±2 ± 2I ±2 ± 3I, · · ·
...

... ...
... · · ·

 .

Since (Z,+) is an abelian group under the usual
addition on Z , then

(
Zt

1 [I ] ,+
)

is a neutrosophic
abelian group under the usual addition on Zt

1 [I ] of the
neutrosophic set of type-1. Consider the set H ⊂ Z,
where H = 3Z={. . . , −6, −3, 0, 3, 6, . . .}. Then the
neutrosophic set Ht

1 [I ] of type-1 is given by:

Ht
1 [I ] = {x+ yI : x, y ∈ H}

= {0, ±3I, ±6I, . . . , 3, 3 ± 3I, 3 ± 6I, . . . , 6, 6 ± 3I, 6 ±
6I, . . . ,n,n ± 3I,n ± 6I, . . . }. It is clear that Ht

1 [I ]

≼︸︷︷︸
N

Zt
1[I ].

Suppose that we take the neutrosophic integer set
of type-2.

Zt
2[I ] =


0, 0I,

±1, ±1I,
±2, ±2I

...
...


Under the usual neutrosophic addition. It does not form a
neutrosophic binary operation because if 2 and 3I are two
elements in Zt

2[I ], then 2 + 3I /∈ Zt
2[I ]. Example 2.2 Let

G = {a, b} be a classical set with the binary operation given
by Table (1).

Table 1. of the binary operation
∗ a b
a a b
b b a

Form a group. Consider Gt
1 [I ] is a neutrosophic set of

type-1, then

Gt
1 [I ] = {g1+g2I :g1, g2∈G} =

{
a+ aI, a+ bI,
b+ aI, b+ bI

}
.

Define the neutrosophic binary operation ∗ on Gt
1 [I ] by

the following table:

Table 2. of the neutrosophic binary operation
∗ a + aI a + bI b + aI b + bI

a + aI a + aI a + bI b + aI b + bI
a + bI a + bI a + aI b + bI b + aI
b + aI b + aI b + bI a + aI a + bI
b + bI b + bI b + aI a + bI a + aI

It is clear that from Table(2). ∗ is a neutrosophic binary
operation, and associative on Gt

1 [I ] . In addition, the
neutrosophic identity eN = e + eI = a + aI, and the
neutrosophic inverse element are shown in Table(3).

Table 3. of the inverse neutrosophic elements
(g1+g2I) a + aI a + bI b + aI b + bI

(g1+g2I)−1 a + aI a + bI b + aI b + bI

According to the previous argument, the neutrosophic
order of Paris N(G) =

(
Gt

1 [I ] , ∗
)

forms a commutative
neutrosophic group. Let H = {a} be a classical subgroup
of G. Consider Ht

1 [I ] is a neutrosophic set of type-1, then
Ht

1 [I ] = {h1+h2I :h1,h2∈H} = {a+ aI} . Define the
neutrosophic binary operation ∗ on Ht

1 [I ] by the following
table:

Table 4. of the neutrosophic binary operation
∗ a + aI
a + aI a + aI

It is obvious that Ht
1 [I ] is a neutrosophic subgroup of

Gt
1 [I ] =

{
a+ aI, a+ bI,
b+ aI, b+ bI

}
by Theorem 3.5 in [9].

Example 2.3 Let G = {1, −1, i, −i} be a classical
set of complex numbers under a multiplication of complex
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Table 5. for the closure of the neutrosophic binary operation.

* 1 + I 1 − I 1 + iI 1 − iI −1 + I −1 − I −1 + iI −1 − iI i + I i − I i + iI i − iI −i + I −i − I −i + iI −i − iI
1 + I 1+I 1 − I 1 + iI 1 − iI −1 + I −1 − I −1 + iI −1 − iI i + I i − I i + iI i + iI −i + I −i − I −i + iI −i − iI
1 − I 1 − I 1+I 1 − iI 1 + iI −1 − I −1 + I −1 − iI −1 + iI i − I i + I i + iI i + iI −i − I −i + I −i − iI −i + iI
1 + iI 1 + iI 1 − iI 1 − I 1+I −1 + iI −1 − iI −1 + I −1 − I i + iI i + iI i − I i + I −i + iI −i − iI −i − I −i + I
1 − iI 1 − iI 1 + iI 1+I 1 − I −1 − iI −1 + iI −1 + I −1 − I i + iI i + iI i + I i − I −i − iI −i + iI −i + I −i − I
−1 + I −1 + I −1 − I −1 + iI −1 − iI 1+I 1 − I 1 + iI 1 − iI −i + I −i − I −i + iI −i − iI i + I i − I i + iI i + iI
−1 − I −1 − I −1 + I −1 − iI −1 + iI 1 − I 1+I 1 − iI 1 + iI −i − I −i + I −i − iI −i + iI i − I i + I i + iI i + iI
−1 + iI −1 + iI −1 − iI −1 − I −1 + I 1 + iI 1 − iI 1 − I 1+I −i + iI −i − iI −i − I −i + I i + iI i + iI i − I i + I
−1 − iI −1 − iI −1 + iI −1 + I −1 − I 1 − iI 1 + iI 1 + 1 1 − I −i − iI −i + iI −i + I −i − I i + iI i + iI i + I i − I

i + I i + I i − I i + iI i + iI −i + I −i − I −i + iI −i − iI −1 + I −1 − I −1 + iI −1 − iI 1+I 1 − I 1 + iI 1 − iI
i − I i − I i + I i + iI i + iI −i − I −i + I −i − iI −i + iI −1 − I −1 + I −1 − iI −1 + iI 1 − I 1+I 1 − iI 1 + iI
i + iI i + iI i + iI i − I i + I −i + iI −i − iI −i − I −i + I −1 + iI −1 − iI −1 − I −1 + I 1 + iI 1 − iI 1 − I 1+I
i − iI i + iI i + iI i + I i − I −i − iI −i + iI −i + I −i − I −1 − iI −1 + iI −1 + I −1 − I 1 − iI 1 + iI 1 + 1 1 − I
−i + I −i + I −i − I −i + iI −i − iI i + I i − I i + iI i + iI 1+I 1 − I 1 + iI 1 − iI −1 + I −1 − I −1 + iI −1 − iI
−i − I −i − I −i + I −i − iI −i + iI i − I i + I i + iI i + iI 1 − I 1+I 1 − iI 1 + iI −1 − I −1 + I −1 − iI −1 + iI
−i + iI −i + iI −i − iI −i − I −i + I i + iI i + iI i − I i + I 1 + iI 1 − iI 1 − I 1+I −1 + iI −1 − iI −1 − I −1 + I
−i − iI −i − iI −i + iI −i + I −i − I i + iI i + iI i + I i − I 1 − iI 1 + iI 1 + 1 1 − I −1 − iI −1 + iI −1 + I −1 − I

numbers form a group. Consider Gt
1 [I ] is a neutrosophic

set of type-1, then:

Gt
1 [I ] ={g1+g2I :g1, g2∈G}.

=


1 + 1I, 1 − 1I, 1 + iI, 1 − iI,

−1 + 1I, −1 − 1I, −1 + iI, −1 − iI

i+ 1I
−i+ 1I

i− 1I
−i− 1I

i+ iI

−i+ iI

i− iI

−i− iI

 .

Let (g1+g2I) , (g′
1+g

′
2I) ∈ Gt

1 [I ] such that
(g1 + g2I) ∗ ((g′

1 + g′
2I)) = ((g1 • g′

1) + (g2 • g′
2) I),

where • is a neutrosophic multiplication of complex
numbers.The binary operation as shown in Table(5).
According to Table(5), ∗ is closed, since g1 • g′

1 and
g2 • g′

2 are closed in G. ∗ is associative under •.
The neutrosophic elementeN = 1 + I. Eachelement has a
neutrosophic inverse element, as shown in Table(6).

Table 6. for the neutrosophic elements.

g 1 + I 1 − I 1 + iI 1 − iI −1 + I −1 − I −1 + iI −1 − iI i + I i − I i + iI i − iI −i + I −i − I −i + iI −i − iI

g−1 1 + I 1 − I 1 − iI 1 + iI −1 + I −1 − I −1 + iI −1 + iI −i + I −i − I −i − iI −i + iI i + I i − I i − iI i + iI

It is clear that the neutrosophic order of pari
N(G) =

(
Gt

1 [I ] , ∗
)

forms commutative neutro-
sophic groups. Let H = {1, −1} be a classical set, consider
Ht

1 [I ] is a neutrosophic set of type-1, then

Ht
1 [I ] ={h1+h2I :h1,h2∈H}.

=

{
1 + I, 1 − I,

−1 + I, −1 − I

}
.

Let (h1+h2I) , (h′
1+h

′
2I) ∈ Ht

1 [I ] such that

(h1+h2I) , ∗
(
h′

1+h
′
2I

)
=

((
h1h

′
1
)
+

(
h2h

′
2
)
I
)

.

The table is shown in Table(7).

Table 7. of the closure neutrosophic binary operation
• 1 + I 1 − I −1 + I −1 − I

1 + I 1 + I 1 − I −1 + I −1 − I
1 − I 1 − I 1 + I −1 − I −1 + I

−1 + I −1 + I −1 − I 1 + I 1 − I
−1 − I −1 − I −1 + I −1 − I 1 + I

Hence, by Theorem 3.5 in [9]. WededucedthatHt
1 [I ] isa

neutrosophicsubgroupofGt
1 [I ]. Note that the neutrosophic

order ψ
(
Ht

1 [I ]
)
= 4,ψ

(
Gt

1 [I ]
)
= 16,andψ

(
Ht

1 [I ]
)

is
divideψ

(
Gt

1 [I ]
)
= 16. Define∗:Gt

1 [I ]×Gt
1 [I ] 7−→Gt

1 [I ]

such that

x ∗ y = (x1 + x2I) ∗ (y1 + y2I)

= (x1 y1) + (x1 y2 + x2y1 + x2y2) I,

∀ x, y ∈ Gt
1 [I ], where • is a multiplication of complex

numbers. ∗ is not a neutrosophic binary operation on
Gt

1 [I ] , because, (1 + 1I) ∗ (1 + 1I) = 1 + 3I /∈ Gt
1 [I ] .

Example 2.4 Let G = {1, −1, i, −i} be a classical
set of complex numbers. Consider Gt

2 [I ] is a neutrosophic
set of type-2, then
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Gt
2 [I ] = {gI∪ {g} :g∈G}

=


1, 1I,

−1, −1I,
i,

−i,
iI,
−iI

 .

1. Define ∗:Gt
2 [I ]×Gt

2 [I ] 7−→Gt
2 [I ] such that

x ∗ y = (x1 + x2I) ∗ (y1 + y2I)

= (x1 + y1) + (x2 + y2) I,
∀ x, y ∈ Gt

2 [I ] , where + is an addition of complex
numbers. ∗ is not a neutrosophic binary operation on
Gt

2 [I ] , because if i and iI ∈ Gt
2 [I ] , then i+ iI /∈

I. Hence ∗ is not a neutrosophic binary operation on
Gt

2 [I ] .
2. Define ∗:Gt

2 [I ]×Gt
2 [I ] 7−→Gt

2 [I ] such that

x∗y =


xy, if x is not indetermenc and y

is indetermenc
(xy) I, if x and y are an indetermenc
(xy) I2, if x and y are not indetermenc

.

• denotes multiplication of complex numbers. ∗ is a
neutrosophic binary operation on Gt

2 [I ] as shown in
Table(8).

Table 8. for the neutrosophic binary operation on Gt
2 [I ].

* 1 −1 i −i I −I iI −iI
1 1 −1 i −i I −I iI −iI

−1 −1 1 −i i −I I −iI iI
i i −i −1 1 iI −iI −I I

−i −i i 1 −1 −iI iI I −I
I 1I −1I iI −iI 1 −I iI −iI

−I −1I 1I −iI iI −I I −iI iI
iI iI −iI −I I iI −iI −I I

−iI −iI iI I −I −iI iI I −I

We see from Table(8) that there is a neutrosophic identity
element eN = 1. Every neutrosophic element in Gt

3 [I ]

has no inverse; therefore, ∗ has no neutrosophic elements.
Hence

(
Gt

2 [I ] , ∗
)

is not a neutrosophic group.

Example2.5 [8] Let Z6 ={0, 1, 2, 3, 4, 5}beaclassical
set and the neutrosophic set of type-1 is given by:

Z6
t
1 [I ] =



0, I, 2I, 3I, 4I, 5I,
1, 1 + I, 1 + 2I, 1 + 3I, 1 + 4I, 1 + 5I,
2, 2 + I, 2 + 2I, 2 + 3I, 2 + 4I, 2 + 5I,
3, 3 + I, 3 + 2I, 3 + 3I, 3 + 4I, 3 + 5I,
4, 4 + I, 4 + 2I, 4 + 3I, 4 + 4I, 4 + 5I,
5, 5 + I, 5 + 2I, 5 + 3I, 5 + 4I, 5 + 5I,


and the order of ψ

(
Z6

t
1 [I ]

)
= 36.

N (Z6) =
〈
Z6

t
1 [I ] , ⊕6

〉
be a finite neutrosophic

group generated by I and Z6 under addition mod-
ulo 6. Consider Ht

1 [I ] = {0, 3, 3I, 3 + 3I},where
H = {0, 3} . Since Ht

1 [I ] is finite, as shown in
Table(9). Ht

1 [I ] ≼
N Z6

t
1 [I ] .

Table 9. of Ht
1 [I ] ≼

N Z6
t
1 [I ] .

⊕6 0 3 3I 3 + 3I
0 0 3 3I 3 + 3I
3 3 0 3 + 3I 3I
3I 3I 3 + 3I 0 3

3 + 3I 3 + 3I 3I 3 0

Note that the neutrosophic order ψ
(
Ht

1 [I ]
)
= 4,

ψ
(
Z6

t
1 [I ]

)
= 36, and ψ

(
Ht

1 [I ]
)

is divides
ψ

(
Z6

t
1 [I ]

)
= 36.

Example 2.6 Let Z3\{0}= {1, 2} be a clas-

sical set and Z3
t
1 [I] \{0}=

{
1+I, 1 + 2I,

2 + 1I, 2 + 2I

}
be a neutrosophic set of type 1. De-
fine a neutrosophic binary operation
∗ : Z3

t
1 [I] \{0}×Z3

t
1 [I] \{0}7−→Z3

t
1 [I] \{0} such that

x∗y= (x1+x2I) ∗ (y1+y2I)= (x1 • y1) + (x2 • y2)I),
where • is a multiplication of mod 3 on
Z3

t
1 [I] \{0} as shown in Table(10).

Table 10. for the neutrosophic binary operation ∗.⊗
3 1+I 1 + 2I 2+I 2 + 2I

1+I 1+I 1 + 2I 2+I 2 + 2I
1 + 2I 1 + 2I 1+I 2 + 2I 2+I
2+I 2+I 2 + 2I 1+I 1 + 2I

2 + 2I 2 + 2I 2+I 1 + 2I 1+I

It is clear that ∗ is a closure, and it has a
neutrosophic identity element eN = 1+I. Furthermore,
every neutrosophic element has an inverse, as shown
in the following table.

Table 11. for the neutrosophic binary operation ∗.
(g1+g2I) 1+I 1 + 2I 2+I 2 + 2I

(g1+g2I)−1 1+I 1 + 2I 2+I 2 + 2I

Hence N(G) =
(
Z3

t
1 [I] \{0}, ∗

)
is an abelian neu-

trosophic group.
Note that. If∗ : Z3

t
1 [I] \{0}×Z3

t
1 [I] \{0}7−→Z3

t
1 [I] \{0}

such that

x ∗ y = (x1 + x2I) ∗ (y1 + y2I)

= (x1 • y1) + (x1 • y2 + x2y1 + x2 • y2) I,

∀ x, y ∈ Z3
t
1 [I] \{0} , where • is a multiplication of

mod 3 on Z3
t
1 [I] \{0}. We see that from Table(12).

Table 12. for neutrosophic operation.⊗
3 1+I 1 + 2I 2+I 2 + 2I

1+I 1 1 + 2I 2+I 2
1 + 2I 1 + 2I 1 + 2I 2+I 2+I
2+I 2+I 2+I 1 + 2I 1 + 2I

2 + 2I 2 2+I 1 + 2I 1
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1 [I ]

∗ is not a neutrosophic binary operation, because
it is not closure.

Definition2.4 LetN(G) =
(
Gt

1 [I ] , ∗
)

be a neutrosophic
group and N(H) =

(
Ht

1 [I ] , ∗
)

be a neutrosophic
subgroup of NG =

(
Gt

1 [I ] , ∗
)
. If x, y ∈ Gt

1 [I ] .
We said that x is neutrosophic congruent to y mod-
ule Ht

1 [I ] , if xy−1 ∈ Ht
1 [I ] . By symbolization,

xy−1 ∈ Ht
1 [I ] ⇔ x≡y (mod Ht

1 [I ] ).

Theorem 2.5 The neutrosophic congruent relation
is a neutrosophic equivalence relation.

Proof.

1. Since Ht
1 [I ] ≼

N Gt
1 [I ] , we have eN = xx−1.

This implies that x ≡ x (mod Ht
1 [I ]). Thus ≡

is a neutrosophic reflexive relation.
2. Suppose that x ≡ y (mod Ht

1 [I ])

⇒ = xy−1 ∈ Ht
1 [I ] ,

⇒ (x1 + x2I) (y1 + y2I)
−1 ∈ Ht

1 [I ] ,

⇒
(
(x1 + x2I) (y1 + y2I)

−1
)−1

∈ Ht
1 [I ] ,

since Ht
1 [I ]

≼
NG

t
1 [I ] ,

⇒
(
(y1 + y2I)

−1
)−1

(x1 + x2) I
−1 ∈ Ht

1 [I ] .

By Theorem 2.3, part 2 in [8],

⇒ (y1 + y2I) (x1 + x2I)
−1 ∈ Ht

1 [I ] .

By Theorem 2.3, part 1 in [8],

⇒ y x−1 ∈ Ht
1 [I ] ,

⇒ y ≡x (mod Ht
1 [I ] ).

Hence ≡ is a neutrosophic symmetric relation.
3. Suppose that x ≡ y (mod Ht

1 [I ])∧ y ≡ z (mod
Ht

1 [I ]),
∵ x ≡ y (mod Ht

1 [I ])

⇒ xy−1 ∈ Ht
1 [I ] ⇒ (x1 + x2I) (y1 + y2I)

−1

∈ Ht
1 [I ] ,

∵ y ≡ z (mod Ht
1 [I ]) ⇒ yz−1 ∈ Ht

1 [I ]

⇒ (y1 + y2I) (z1 + z2I)
−1 ∈ Ht

1 [I ] ,

⇒
(
(x1 + x2I) (y1 + y2I)

−1
)
((y1 + y2I)

(z1 + z2I)
−1

)
∈ Ht

1 [I ] ,

since Ht
1[I ]≼N Gt

1 [I ] ⇒(
(x1 + x2I) (y1 + y2I)

−1 (y1 + y2I)
)
(z1 + z2I)

−1 ∈
Ht

1 [I ] ,

⇒ ((x1 + x2) (e1 + e2I)) (z1 + z2)
−1 ∈ Ht

1 [I ] ,
⇒ (x1 + x2) (z1 + z2)

−1 ∈ Ht
1 [I ] ,

⇒ xz−1 ∈ Ht
1 [I ] ,

⇒ x ≡ z
(
mod Ht

1 [I ]
)

.

Therefore, ≡ is a neutrosophic transitive relation,
and consequently, ≡ is a neutrosophic equivalence
relation.

Theorem 2.6 If Ht
1 [I ] ≼ Gt

1 [I ] and M t
1 [I ] ≼

Gt
1 [I ], then Ht

1 [I ]M t
1 [I ] ≼ Gt

1 [I ] iff

Ht
1 [I ]M t

1 [I ] =
〈
Ht

1 [I ]∪M t
1 [I ]

〉
.

Proof. Suppose that Ht
1 [I ]M t

1 [I ] ≼ Gt
1 [I ]. Let

x ∈ Ht
1 [I ]M t

1 [I ]

=⇒ ∃h ∈ Ht
1 [I ] ∧ m ∈ M t

1 [I ] such that x =

hm. Hence x ∈ Ht
1 [I ]∪M

t
1 [I ], so

Ht
1 [I ]M t

1 [I ] ⊆
〈
Ht

1 [I ]∪M t
1 [I ]

〉
.

Also, if h ∈ Ht
1 [I ] =⇒ ∃eN such that h = heN =⇒

Ht
1 [I ] ⊆ Ht

1 [I ]∪M
t
1 [I ], and if m ∈ M t

1 [I ] =⇒ ∃eN

such that m = meN =⇒ M t
1 [I ] ⊆ Ht

1 [I ]∪M
t
1 [I ].

We conclude that
Ht

1 [I ]M t
1 [I ] =

〈
Ht

1 [I ]∪M
t
1 [I ]

〉
. Conversely,

suppose that Ht
1 [I ]M

t
1 [I ] =

〈
Ht

1 [I ]∪M
t
1 [I ]

〉
. Let

x, y ∈ Ht
1 [I ]M

t
1 [I ] , since x ∈ Ht

1 [I ]M
t
1 [I ]

=⇒ ∃
(
h ∈ Ht

1 [I ]
)

∧ ∃
(
m ∈ M t

1 [I ]
)

such that x = hm

=⇒
(
h−1 ∈ Ht

1 [I ]
)

∧
(
m−1 ∈ M t

1 [I ]
)

for
some y−1 = h−1m−1 = (mh)−1, hence
xy−1 = (hm) (mh)−1∈ Ht

1 [I ]M
t
1 [I ] ≼ Gt

1 [I ] .

3. Neutrosophic Cosets and Their Properties
In this section, we present the neutrosophic left/right
cosets with their properties.

Theorem 3.1 Let N(H)=
〈
Ht

1 [I ] , ∗
〉

be a
neutrosophic subgroup of a neutrosophic group
N(G)=

〈
Gt

1 [I ] , ∗
〉

, and x, y ∈ Gt
1 [I ]. Define a

neutrosophic relation R on the neutrosophic group
Gt

1 [I ] such as xRy ⇔ xy−1 ∈ Ht
1 [I ] , ∀ x, y ∈

Gt
1 [I ], then R is a neutrosophic equivalence relation

on Gt
1 [I ].

Proof. Suppose that x, y, z ∈ Gt
1 [I ].

1. Since, xx−1 = (x1 + x2I)(x1 + x2I)
−1

= (x1 + x2I)(x1
−1 + x2

−1I)

= (x1x1
−1 + x2x2

−1I)

= (e1 + e2I) = eN ∈ Ht
1 [I ] .

Hence, R is a neutrosophic reflexive relation.

2. Assume that xRy =⇒
xy−1 = (x1 + x2I)(y1 + y2I)

−1 ∈ Ht
1 [I ](

xy−1)−1
=

(
(x1 + x2I)(y1 + y2I)

−1
)−1

=⇒
(
y−1)−1

x−1 =
(
(y1 + y2I)

−1
)−1

(x1 + x2I)
−1

=⇒ y x−1 =
(
y1

−1 + y2
−1I

)−1
(x1 + x2I)

−1
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= (y1 + y2I) (x1 + x2I)
−1 ∈ Ht

1 [I ] .

Hence, R is a neutrosophic relation.

3. Suppose that xRy and yRz. Since,

xRy =⇒ xy−1 = (x1 + x2I)(y1 + y2I)
−1 ∈ Ht

1 [I ], and

yRz =⇒ yz−1 = (y1 + y2I)(z1 + z2I)
−1 ∈ Ht

1 [I ] .

=⇒
(
xy−1) (

yz−1)
=

(
(x1 + x2I)(y1 + y2I)

−1
)

(
(y1 + y2I)(z1 + z2I)

−1
)

.

=⇒
(
xy−1y

)
z−1 =

(
(x1 + x2I)(y1 + y2I)

−1(y1 + y2I)
)

(z1 + z2I)
−1.

=⇒ (xe) z−1 = ((x1 + x2I)(e1 + e2I)) (z1 + z2I)
−1.

=⇒ xz−1 = (x1 + x2I) (z1 + z2I)
−1 ∈ Ht

1 [I ] =⇒ xRz.
Hence R is a neutrosophic transitive relation. Thus
R is a neutrosophic equivalence relation on Gt

1 [I ] .
A Description of the neutrosophic class of a neutro-
sophic element x ∈ Gt

1 [I ] . have,

x = [x] =
{
y ∈ Gt

1 [I ] : yRx
}

=
{
y ∈ Gt

1 [I ] : yx−1 = (y1 + y2I) (x1 + x2I)
−1

∈ Ht
1 [I ]

}
= {y ∈ Gt

1 [I ] : yx−1 = h ⇔ (y1 + y2I) (x1 + x2I)
−1

= ((h1 + hy2I)) ,h ∈ Ht
1 [I ] }

= {y ∈ Gt
1 [I ] : y = hx ⇔ (y1 + y2I) = ( (h1 + hy2I)

(x1 + x2I) ),h ∈ Ht
1 [I ] }

= Ht
1 [I ] x. R is called a neutrosophic right relation

on Gt
1 [I ] and Ht

1 [I ] x is a neutrosophic right-cosets
of Ht

1 [I ] in Gt
1 [I ] containing x. The set of all

neutrosophic right-cosets of Ht
1 [I ] in Gt

1 [I ] denoted
by⌊
Gt

1 [I ]/H
t
1 [I ]

⌋
R =

{
y ∈ Gt

1 [I ] : yRx
}

, this neu-
trosophic set is called a neutrosophic quotient set.
Likewise, the neutrosophic relation is defined as
xLy ⇔ x−1y ∈ Ht

1 [I ] , ∀ x, y ∈ Gt
1 [I ]. L is called a

neutrosophic left relation and xHt
1 [I ] is called the set of all

neutrosophic left-cosets ofHt
1 [I ] inGt

1 [I ] containing x,
denoted by:

⌈
Gt

1 [I ]/H
t
1 [I ]

⌉
L =

{
y ∈ Gt

1 [I ] : yLx
}

.

Corollary 3.2 If N(G)=
〈
Gt

1 [I ] , ∗
〉

is a commu-
tative (or abelian) neutrosophic group, then the
neutrosophic right relation is equal to the neutro-
sophic left relation, and eNH

t
1 [I ] = Ht

1 [I ].

Proof. Suppose that x, y ∈ Gt
1 [I ] such that

xRy ⇔ xy−1 = (x1 + x2I)(y1 + y2I)
−1 ∈ Ht

1 [I ]

y−1x = (y1 + y2I)
−1 ∈ Ht

1 [I ]

⇔ yLx ⇔ xLy. Thus R = L. Also,
eNH

t
1 [I ] = {eNh : h ∈ Ht

1 [I ]}

= {(eN + eN I) ∗ (h1 + h2I) : eN ,h1,h2 ∈ H,

and indeterminacy I}

= {(eNh1) + (eNh2) I : eN ,h1,h2 ∈ H,

and indeterminacy I}

= {h : h ∈ Ht
1 [I ]}

= Ht
1 [I ] .

Theorem 3.3 Let N(H)=
〈
Ht

1 [I ] , ∗
〉

be a neutro-
sophic subgroup of a neutrosophic group
N(G)=

〈
Gt

1 [I ] , ∗
〉

, then there is a one-to-one corre-
spondence between a neutrosophic left (right) coset
and a neutrosophic right-coset of Ht

1 [I ] in Gt
1 [I ] .

Proof. Let L =
{
xHt

1 [I ] : x ∈ Gt
1 [I ]

}
and

R =
{
Ht

1 [I ] x : x ∈ Gt
1 [I ]

}
be two neutrosophic left-

coset, and neutrosophic right-coset respectively. Define
f : L −→ R such that f

(
xHt

1 [I ]
)

= Ht
1 [I ] x

−1,
∀xHt

1 [I ] ∈ L. Assume that xHt
1 [I ], yHt

1 [I ] ∈ L
such that xHt

1 [I ] = yHt
1 [I ], As xHt

1 [I ] = yHt
1 [I ] ⇒

∃x1,x2, y1, y2 ∈ G such that

(x1 + x2I)H
t
1 [I ] = (y1 + y2I)H

t
1 [I ]

⇒(y1+y2I)
−1 (x1+x2I)∈Ht

1 [I ] ,

⇒(y1+y2I)
−1 (x1+x2I) =

(
y1

−1+y2
−1I

)(
x1

−1+x2
−1I

)−1∈Ht
1 [I ] ,

⇒ Ht
1 [I ]

(
y1

−1 + y2
−1I

)
= Ht

1 [I ]
(
x1

−1 + x2
−1I

)
⇒ Ht

1 [I ] y
−1 = Ht

1 [I ] x
−1⇒f

(
yHt

1 [I ]
)
= f

(
xHt

1 [I ]
)

.

Suppose that f
(
xHt

1 [I ]
)
=f

(
yHt

1 [I ]
)

⇒Ht
1 [I ] x

−1=Ht
1 [I ] y

−1

⇒ x−1(
y−1)−1

=(x1+ x2I)
−1

(
(y1+y2I)

−1
)−1

∈Ht
1 [I ]

⇒(x1+ x2I)
−1

((
y−1

1
)−1

+
(
y−1

2
)−1

I
)

∈Ht
1 [I ]

⇒(x1+ x2I)
−1 (y1+y2I) ∈Ht

1 [I ]

⇒
(
(x1+ x2I)

−1 (y1+y2I)
)−1

=(y1+y2I)
−1(

(x1+ x2I)
−1

)−1
∈Ht

1 [I ]

⇒(y1+y2I)
−1

((
x−1

1
)−1

+
(
x−1

2
)−1

I
)
=

(y1+y2I)
−1 (x1 + x2I) ∈Ht

1 [I ]

⇒ (x1+ x2I)H
t
1 [I ] = (y1+y2I)H

t
1 [I ] .

⇒ xHt
1 [I ] =yH

t
1 [I ] .

Therefore, f is a neutrosophic injective function.
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1 [I ]

Suppose that Ht
1 [I ] x∈R. Since

Ht
1 [I ] x=H

t
1 [I ]

(
x−1)−1

=f
(
xHt

1 [I ]
)

. Hence is
a neutrosophic surjective function, and consequently,
f is a neutrosophic bijective function.

Theorem 3.4 Let N(H)=
〈
Ht

1 [I ] , ∗
〉

be a neutro-
sophic subgroup of a neutrosophic group
N(G)=

〈
Gt

1 [I ] , ∗
〉

, then the neutrosophic elements
of Ht

1 [I ] is a one-to-one correspondence with the
neutrosophic elements of any neutrosophic left-coset/
a neutrosophic right-coset of Ht

1[I ] in Gt
1 [I ] .

Proof. Consider Ht
1 [I ]

≼
N Gt

1 [I ], x∈Gt
1 [I ], and

xHt
1 [I ] is any a neutrosophic left-coset of Ht

1 [I ]

in Gt
1 [I ] . To show that there exists a one-to-one

neutrosophic function of Ht
1 [I ] onto xHt

1 [I ] .
Define a neutrosophic function f :Ht

1 [I ]−→xHt
1 [I ]

f (h) =xh⇔f (h1+h2I) = (x1+x2I) (h1+h2I)⇔

((x1h1) + (x2h2) I) , ∀h∈ Ht
1 [I ] .

Let h, h
′
∈Ht

1 [I ] such that h =h
′ ; as

h =h
′
⇒f (h) =f

(
h

′
)

⇒xh=xh′

⇒ (x1+x2I) (h1+h2I) = (x1+x2I)
(
h′

1+h
′
2I

)
⇒ ((x1h1) + (x2h2) I) =

((
x1h

′
1
)
+

(
x2h

′
2
)
I
)

,

∀h, h
′
∈Ht

1 [I ] . Hence, f is well-defined.
Suppose that, f (h) =f

(
h

′
)

⇒xh=xh′

⇒x−1 (xh) = x−1
(
xh

′
)

⇒
(
x−1x

)
h =

(
x−1x

)
h

′

⇒
((
x1

−1+x2
−1I

)
(x1+x2I)

)
(h1+h2I)

=
((
x1

−1+x2
−1I

)
(x1+x2I)

) (
h′

1+h
′
2I

)
⇒

((
x1

−1x1+x2
−1x2 I

)) (
h′

1+h
′
2I

)
⇒

(((
e1

−1e1
)
+

(
e2

−1e2
)
I
))

(h1+h2I)

=
(((

e1
−1e1

)
+

(
e2

−1e2
)
I
)) (

h′
1+h

′
2I

)
⇒ (e1+e2I) (h1+h2I) = (e1+e2I)

(
h′

1+h
′
2I

)
⇒ (e1h1+ (e2h2) I) =

(
e1h

′
1+

(
e2h

′
2
)
I
)

⇒ (h1+h2I) =
(
h′

1+h
′
2I

)
⇒ h =h

′
.

Therefore, f is a neutrosophic injective function.
Finally, assume that xh∈xHt

1 [I ] , where x ∈Gt
1 [I ]

and h∈ Ht
1 [I ] . As h∈ Ht

1 [I ] , then f (h) =xh,
thus f is a neutrosophic surjective function, and
consequently, f is a neutrosophic bijective function,
and the neutrosophic order of

ψ
(
Ht

1 [I ]
)
=ψ

(
xHt

1 [I ]
)

.

Observation. By a similar argument, the neutrosophic
elements of Ht

1 [I ] are a one-to-one correspondence

with the neutrosophic right-cosets of Ht
1 [I ] inGt

1 [I ] .

Corollary 3.3 Consider Ht
1 [I ]

≼
N Gt

1 [I ]. If x∈Gt
1 [I ].

Then the neutrosophic order of Ht
1 [I ],xHt

1 [I ] , and
Ht

1 [I ] x are equals. That is

ψ
(
Ht

1 [I ]
)
=ψ

(
xHt

1 [I ]
)
=ψ

(
Ht

1 [I ] x
)

.

By Theorem 3.3. As we saw from Theorem 3.1,
we can define neutrosophic left-relation/ neutrosophic
right-relation on Gt

1 [I ] with respect to Ht
1 [I ], there-

fore, the following definition results directly from
it.

Definition 3.1 Let N(H)=
〈
Ht

1 [I ] , ∗
〉

be a
neutrosophic subgroup of a neutrosophic group
N(G)=

〈
Gt

1 [I ] , , ∗
〉

, and x ∈ Gt
1 [I ]. Then, the sets

of the form

1. xHt
1 [I ] = {xh : h ∈ Ht

1 [I ]} is called a neutro-
sophic left-coset of Ht

1 [I ] in Gt
1 [I ] , and

2. Ht
1 [I ] x = {hx : h ∈ Ht

1 [I ]} is called a neu-
trosophic right-cosets of Ht

1 [I ] in Gt
1 [I ] , the

neutrosophic-element x is called a representative
of xHt

1 [I ] and Ht
1 [I ] x.

Theorem 3.5 Let N(H) =
〈
Ht

1 [I ] , ∗
〉

be a neutro-
sophic subgroup of a neutrosophic group
N(G) =

〈
Gt

1 [I ] , ∗
〉

, and x, y ∈ Gt
1 [I ]. Then

xHt
1 [I ] = Ht

1 [I ] ⇔ x ∈ Ht
1 [I ] , and

Ht
1 [I ] y = Ht

1 [I ] ⇔ y ∈ Ht
1 [I ] .

Proof.
Consider x ∈ Ht

1 [I ] to show that xHt
1 [I ] =

Ht
1 [I ] . Suppose that y ∈ xHt

1 [I ].
⇒ ∃ h ∈ Ht

1 [I ] such that y = xh

⇒ xh ∈ Ht
1 [I ] by Theorem 3.1 in [9],

⇒ y ∈ Ht
1 [I ], hence xHt

1 [I ] ⊂ Ht
1 [I ] . Con-

versely, Suppose that

y ∈ Ht
1 [I ] ⇒ y = eNy

⇒ y =
(
xx−1)

∗ y

⇒ y = x
(
x−1y

)
,

since x−1, y ∈ Ht
1 [I ] and Ht

1 [I ]
≼
NG

t
1 [I ]

⇒ y = x−1y ∈ Ht
1 [I ]

⇒ y = x
(
x−1y

)
∈ xHt

1 [I ], hence Ht
1 [I ] ⊂ xHt

1 [I ] ,
and consequently,
Ht

1 [I ] = xHt
1 [I ] . On the other hand, let

x ∈ G [I ], and assume that xHt
1 [I ] = Ht

1 [I ] ⇒
xeN = x ∈ xHt

1 [I ] = Ht
1 [I ] . The second part

uses a similar technique.

Theorem 3.6 Let NH=
〈
Ht

1 [I ] , ∗
〉

be a neu-
trosophic subgroup of a neutrosophic group
N(G)= ⟨G [I ] , ∗⟩ , and x, y ∈ Gt

1 [I ]. Then
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xHt
1 [I ] = yHt

1 [I ] ⇔ y−1x ∈ Ht
1 [I ] , and

Ht
1 [I ] x = Ht

1 [I ] y ⇔ xy−1 ∈ Ht
1 [I ] .

Proof.
Suppose that

xHt
1 [I ] = yHt

1 [I ] ⇒ y−1xHt
1 [I ] = y−1yHt

1 [I ]

⇒ y−1xHt
1 [I ] = y−1yHt

1 [I ]

⇒ y−1xHt
1 [I ] = eNH

t
1 [I ]

⇒ y−1xHt
1 [I ] = Ht

1 [I ]

⇒ y−1x ∈ Ht
1 [I ]. Conversely,

Suppose that y−1x ∈ Ht
1 [I ] ⇒ y−1xHt

1 [I ] =

Ht
1 [I ] " by theorem 3.2"

⇒ yy−1xHt
1 [I ] = yHt

1 [I ]

⇒ eNxH
t
1 [I ] = yHt

1 [I ]

⇒ xHt
1 [I ] = yHt

1 [I ] .
The second part is similar to the argument.

Example 3.1 Consider Ht
1 [I ] ≼

N Gt
1 [I ], in

examples 2.2, then all neutrosophic left-cosets/ neu-
trosophic right-cosets of Ht

1 [I ] in Gt
1 [I ] are given

by:

(a+ aI)Ht
1 [I ] =

{
(a+ aI) h : h ∈ Ht

1 [I ]
}
= {(a+ aI)

(a+ aI)} = {a+ aI} = Ht
1 [I ] .

(a+ bI)Ht
1 [I ] =

{
(a+ bI) h : h ∈ Ht

1 [I ]
}

,
= {(a+ bI) (a+ aI)}, and

= {(a+ bI)} .

(b+ aI)Ht
1 [I ] =

{
(b+ aI) h : h ∈ Ht

1 [I ]
}

,
= {(b+ aI) (a+ aI)}, and

= {(b+ aI)} .

(b+ bI)Ht
1 [I ] =

{
(b+ bI) h : h ∈ Ht

1 [I ]
}

,
= {(b+ bI) (a+ aI)}, and

= {(b+ bI)} .

Example 3.2 Consider Ht
1 [I ] ≼

N Gt
1 [I ] in exam-

ple 2.3, to find some neutrosophic left-cosets and
neutrosophic right-cosets of Ht

1 [I ] in Gt
1 [I ]. We

have

xHt
1 [I ] = {xh : h ∈ Ht

1 [I ]}
(1 + I)Ht

1 [I ] =
{
(1 + I) h : h ∈ Ht

1 [I ]
}

=

{
(1 + I) (1 + I) , (1 + I) (1 − I) ,

(1 + 1I) (−1 + I) , (1 + 1I) (−1 − I)

}
=

{
(1 + I) , (1 − I) ,
(−1 + I) , (−1 − I)

}
= Ht

1 [I ] ,

because (1 + 1I) ∈ Ht
1 [I ] ,

(1 + iI)Ht
1 [I ] =

{
(1 + iI) h : h ∈ Ht

1 [I ]
}

=

{
(1 + iI) (1 + I) , (1 + iI) (1 − I) ,
(1 + iI) (1 + iI) , (1 + iI) (−1 − I)

}
=

{
(1 + iI) , (1 − iI) ,
(1 − I) , (−1 − iI)

}
(1 − iI)Ht

1 [I ] =
{
(1 − iI) h : h ∈ Ht

1 [I ]
}

,

=

{
(1 − iI) (1 + I) , (1 − iI) (1 − I) ,
(1 − iI) (1 + iI) , (1 − iI) (−1 − I)

}
,

=

{
(1 − iI) , (1 + iI) ,
(1 + I) , (−1 + iI)

}
.

Ht
1 [I ] (1 − I) = {h (1 − I) : h ∈ H [I ]} ,

=

{
(1 + I) (1 − I) , (1 − I) (1 − I) ,
(−1 + I) (1 − I) , (−1 − I) (1 − I)

}
,

=

{
(1 − I) , (1 + I) ,
(−1 − I) , (−1 + I)

}
= Ht

1 [I ] ,

since (1 − I) ∈ Ht
1 [I ] .

Ht
1 [I ] (1 + iI) = {h (1 + iI) : h ∈ H [I ]} ,

=

{
(1 + I) (1 + iI) , (1 − I) (1 + iI) ,
(−1 + I) (1 + iI) , (−1 − I) (1 + iI)

}
,

=

{
(1 + iI) , (1 − iI) ,
(−1 + iI) , (−1 − iI)

}
.

Ht
1 [I ] (1 − iI) = {h (1 − iI) : h ∈ H [I ]} ,

=

{
(1 + I) (1 − iI) , (1 − I) (1 − iI) ,
(−1 + I) (1 − iI) , (−1 − I) (1 − iI)

}
,

=

{
(1 − iI) , (1 + iI) ,
(−1 − iI) , (−1 + iI)

}
.

Note that. ψ
(
Ht

1 [I ]
)
= 4,ψ

(
xHt

1 [I ]
)
= 4and

ψ
(
Ht

1 [I ] x
)
= 4.

Example 3.3 Consider Ht
1 [I ] ≼

N Zt
1 [I ] in

example 2.1. Then the following is the neutrosophic
left coset when x = (2 + 3I) is given by:

(2 + 3I) +Ht
1 [I ] = {(2 + 3I) + h : h ∈ Ht

1 [I ]}

=



(2 + 3I) , (2 + 6I) , 2, (2 + 9I) , (2 − 3I) ,
...

(5 + 3I) , (5 + 6I) , 5, (5 + 9I) , (5 − 3I) ,
...

(8 + 3I) , (8 + 6I) , 8, (8 + 9I) , (8 − 3I) ,
...

((2 + n) + 3I) , ((2 + n) + 6I) ,
(2 + n) , ((2 + n) + 9I) , ((2 + n) − 3I) ,

...


Theorem 3.7 Let N(H)=

〈
Ht

1 [I ] , ∗
〉

be a
neutrosophic subgroup of a neutrosophic group
N(G)=

〈
Gt

1 [I ] , ∗
〉

, and x, y ∈ Gt
1 [I ]. Then either
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1 [I ]

xHt
1 [I ] = yHt

1 [I ] or xHt
1 [I ] ∩ yHt

1 [I ] = ∅t
1 [I ] ,

and either Ht
1 [I ] x = Ht

1 [I ] y or Ht
1 [I ] x ∩Ht

1 [I ] y =

∅t
1 [I ] .

Proof. Consider Ht
1 [I ]

≼
N G [I ] ) and x, y ∈ G [I ].

Suppose that xHt
1 [I ] ∩ yHt

1 [I ] ̸= ∅t
1 [I ] ⇒ ∃z ∈

xHt
1 [I ] ∧ z ∈ yHt

1 [I ] ⇒∃h1∈Ht
1 [I ]∧∃h2∈Ht

1 [I ] such
that z = xh1 ∧z = yh2

⇒ xh1 = yh2

⇒ y−1xh1 = y−1yh2

⇒ y−1xh1 = eN h2

⇒ y−1xh1 = h2

⇒ xHt
1 [I ] = yHt

1 [I ] ”

by theorem 3.2". The second is similar. Definition

3.2 [17] Let ℘ℵ =

Ht
i [I ]︸ ︷︷ ︸
α

: α ∈ i

 be a family of

neutrosophic subsets of Ht
i [I ] , for any i = 1, 2, 3,

we said that

Ht
i [I ]︸ ︷︷ ︸
α

: α ∈ i

 is a neutrosophic

partition of Ht
i [I ] .If satisfies the following conditions:

1. Ht
i [I ]︸ ︷︷ ︸

α

̸= ∅t
i [I ], for any i = 1, 2, 3, and ∀α ∈ i,

2. For each Ht
i [I ]︸ ︷︷ ︸

α

and Ht
i [I ]︸ ︷︷ ︸

β

, then either

Ht
i [I ]︸ ︷︷ ︸

α

= Ht
i [I ]︸ ︷︷ ︸
β

or Ht
i [I ]︸ ︷︷ ︸
α

∩Ht
i [I ]︸ ︷︷ ︸
β

= ∅t
i [I ] ,

∀i = 1, 2, 3,
3. Ht

i [I ] =
⋃
Ht

i [I ]︸ ︷︷ ︸
α∈i

.

Corollary 3.8 Let Ht
1 [I ]≼N Gt

1 [I ]. Then
xHt

1 [I ] =
{
xh : h ∈ Ht

1 [I ] ∧ x ∈ Gt
1 [I ]

}
forms a

neutrosophic-partition of a neutrosophic group Gt
1 [I ].

Proof. Let Ht
1 [I ] be a neutrosophic subgroup

of a neutrosophic-group Gt
1 [I ]. Consider the neu-

trosophic partition-set ℘ℵ =

xHt
1 [I ]︸ ︷︷ ︸
α

: α ∈ i

,

℘ℵ =

{
xh︸︷︷︸
α

: x ∈ Gt
1 [I ] ∧ h ∈ Ht

1 [I ] ,α ∈ i

}
,

where i = {1, 2, 3, . . . } ℘ℵ is the set of all
neutrosophic left-cosets of Ht

1 [I ] in Gt
1 [I ] ,

By Theorem 3.3, either xHt
1 [I ] = yHt

1 [I ] or
xHt

1 [I ] ∩ yHt
1 [I ] = ∅, where x, y ∈ Gt

1 [I ] . Since
xHt

1 [I ] ⊂ Gt
1 [I ], for all x ∈ Gt

1 [I ] therefore⋃
xHt

i [I ]︸ ︷︷ ︸
α∈i

⊂ Gt
1 [I ] . On the other hand, if x ∈ Gt

1 [I ],

then x ∈ xHt
1 [I ] ⊂

⋃
xHt

i [I ]︸ ︷︷ ︸
α∈i

, hence

Gt
1 [I ] ⊂

⋃
xHt

i [I ]︸ ︷︷ ︸
α∈i

, thus, Gt
1 [I ] =

⋃
xHt

i [I ]︸ ︷︷ ︸
α∈i

, there-

fore ℘ℵ is a neutrosophic partition of Gt
1 [I ] .

Example 3.4 Consider all the neutrosophic left
cosets of Ht

1 [I ] in Gt
1 [I ] in Example 2.2, and

according to Corollary 3.8, the neutrosoph

℘ℵ =

xHt
1 [I ]︸ ︷︷ ︸
α

: α ∈ i

 , i = {1, 2, 3, 4},

℘ℵ=

(a+aI)Ht
1 [I ]︸ ︷︷ ︸

1

, (a+bI)Ht
1 [I ]︸ ︷︷ ︸

2

,

(b+aI)Ht
1 [I ]︸ ︷︷ ︸

3

, (b+bI)Ht
1 [I ]︸ ︷︷ ︸

4

 ,

and ℘ℵ=

{(a+aI)}︸ ︷︷ ︸
1

, { (a+bI)}︸ ︷︷ ︸
2

, {(b+aI)}︸ ︷︷ ︸
3

, {(b+bI)}︸ ︷︷ ︸
4

.

By definition 3.2, we have,

1. xHt
1 [I ]︸ ︷︷ ︸
α

̸=∅t
1 [I ] , for any α∈i and i={1, 2, 3, 4},

2. xHt
1 [I ]︸ ︷︷ ︸

α∈i

∩xHt
1 [I ]︸ ︷︷ ︸
β∈i

̸=∅t
1 [I ] , α ̸=β, and

3. Gt
1 [I ] =

⋃
xHt

1 [I ]︸ ︷︷ ︸
α∈i

.

Definition 3.3 Let N(H) =
〈
Ht

1 [I ] , ∗
〉

be a
neutrosophic subgroup of a neutrosophic group
NG=

〈
Gt

1 [I ] , ∗
〉

with
∣∣Gt

1 [I ]
∣∣ neutrosophic finite.

The neutrosophic number of distinct neutrosophic
left-cosets / distinct neutrosophic right-cosets, written[
Gt

1 [I ] : Ht
1 [I ]

]
, of Ht

1 [I ] in Gt
1 [I ] is called the

index of Ht
1 [I ] in Gt

1 [I ] . In the next theorem, we
prove the Lagrange theorem for neutrosophic sets.
Theorem 3.9 (Lagrange’s theorem) Let
N(H) =

〈
Ht

1 [I ] , ∗
〉

be a neutrosophic subgroup
of a finite neutrosophic group N(G) =

〈
Gt

1 [I ] , ∗
〉

,
then the neutrosophic order of Ht

1 [I ] di-
vides the neutrosophic order of Gt

1 [I ] ,
symbolically, ψ

(
Gt

1 [I ]
)
=

[
Gt

1 [I ] : Ht
1 [I ]

]
ψ

(
Ht

1 [I ]
)

or
Ht

1 [I ]
∣∣Gt

1 [I ] .

Proof. From the premise Gt
1 [I ] is a finite neu-

trosophic group, so the neutrosophic number of
neutrosophic-left cosets of Ht

1 [I ] in Gt
1 [I ] is finite.

Consider the neutrosophic elements:
x1 = x11 + x12I,x2 = x21 + x22I, . . . ,xn =

xn1 + xn2I such that the neutrosophic set:{
x1Ht

1 [I ] ,x2Ht
1 [I ] , . . . ,xnH

t
1 [I ]

}
is the set

of all distinct neutrosophic left-coset elements
of Ht

1 [I ] in Gt
1 [I ]. Then, by using Corollary

3.2, the set
{
x1Ht

1 [I ] ,x2Ht
1 [I ] , . . . ,xnH

t
1 [I ]

}
forms a neutrosophic partition of a neutrosophic
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group Gt
1 [I ], hence Gt

1 [I ] =
⋃n

i=1 xiH
t
1 [I ]and

xiH
t
1 [I ] ∩ xjH

t
1 [I ] = ∅t

1 [I ] for all i ̸= j, where
1 ≤ i, j ≤ n, therefore

[
Gt

1 [I ] : Ht
1 [I ]

]
= n, and

ψ
(
Gt

1 [I ]
)
= ψ

(
x1Ht

1 [I ]
)
+ · · · + ψ

(
xnH

t
1 [I ]

)
. So, by

using Corollary 3.8, ψ
(
Ht

1 [I ]
)
= ψ

(
xiH

t
1 [I ]

)
for all i,

1 ≤ i ≤ n, therefore

ψ
(
Gt

1 [I ]
)
= ψ

(
Ht

1 [I ]
)
+ · · · + ψ

(
Ht

1 [I ]
)︸ ︷︷ ︸

n−times

= nψ
(
Ht

1 [I ]
)

=
[
Gt

1 [I ] : Ht
1 [I ]

]
ψ

(
Ht

1 [I ]
)

.
Thus, the neutrosophic order of Ht

1 [I ]divides the neutro-
sophic order of Gt

1 [I ] .

4.Neutrosophic Normal Subgroups and Neutro-
sophic Quotient Groups
In section 3, we saw that a neutrosophic subgroup Ht

1 [I ] of
type-1 of a neutrosophic group Gt

1 [I ] of type-1 induces two
decompositions of Gt

1 [I ], namely, the first by neutrosophic
left-cosets and the second by neutrosophic right-cosets.
This means that Gt

1 [I ] can be expressed as a disjoint union
of distinct neutrosophic left/right cosets.

Theorem 4.1 Let NH=
〈
Ht

1 [I ] , ∗
〉

be a neutro-
sophic subgroup of a neutrosophic group

N (G) = ⟨G [I ] , ∗⟩ . Then, the following neutrosophic
propositions are equivalent:

1. R = L,
2. xHt

1 [I ] = Ht
1 [I ] x, ∀ x ∈ Gt

1 [I ] ,
3. xHt

1 [I ] ⊆ Ht
1 [I ] x, ∀ x ∈ Gt

1 [I ] or Ht
1 [I ] x ⊆

xHt
1 [I ], ∀ x ∈ Gt

1 [I ],
4. xHt

1 [I ] x
−1 ⊆ Ht

1 [I ] , ∀ x ∈ Gt
1 [I ] ,

5. xhx−1 ∈ Ht
1 [I ] , ∀ x ∈ Gt

1 [I ] , h ∈ Ht
1 [I ]

6. xHt
1 [I ] x

−1 = Ht
1 [I ] , ∀ x ∈ Gt

1 [I ] .

Proof. Assume that R = L ⇐⇒ xHt
1 [I ] = Ht

1 [I ] x " by
Theorem 3.1 and Definition 3.1 in the previous section".

⇐⇒ xHt
1 [I ] ⊆ Ht

1 [I ] x" by Theorem 3.4 ∈ [12]”.
Let x ∈ Gt

1 [I ] .
⇐⇒ xHt

1 [I ] x
−1 ⊆ Ht

1 [I ] x x
−1

⇐⇒ xHt
1 [I ] x

−1 ⊆ Ht
1 [I ] eN

⇐⇒ xHt
1 [I ] x

−1 ⊆ Ht
1 [I ] " by Corollary 3.1

in the previous section”.

⇐⇒ x−1xHt
1 [I ] x

−1 ⊆ x−1H
t
1 [I ]

⇐⇒ eNH
t
1 [I ] x

−1 ⊆ x−1H
t
1 [I ]

⇐⇒ Ht
1 [I ] x

−1 ⊆ x−1H
t
1 [I ]

⇐⇒ Ht
1 [I ] x

−1x ⊆ x−1H
t
1 [I ] x

⇐⇒ Ht
1 [I ] eN ⊆ x−1H

t
1 [I ] x

⇐⇒ Ht
1 [I ] ⊆ x−1H

t
1 [I ] x = x−1H

t
1 [I ]

(
x−1)−1

⇐⇒ xHt
1 [I ] x

−1 = Ht
1 [I ] .

⇐⇒ xHt
1 [I ] x

−1x = Ht
1 [I ] x

⇐⇒ xHt
1 [I ] eN = Ht

1 [I ] x

⇐⇒ xHt
1 [I ] = Ht

1 [I ] x

⇐⇒ R = L.

According to Theorem 4.1, we use any neutrosophic
proposition to define a neutrosophic normal (or neutrosophic
invariant) subgroup of Gt

1 [I ] ,

Definition 4.1 Let N(G) =
(
Gt

1 [I ] , ∗
)

be a neu-
trosophic group, and N(H) =

(
Ht

1 [I ] , ∗
)

be a
neutrosophic subgroup of N(G) =

(
Gt

1 [I ] , ∗
)
. Ht

1 [I ] is
called a neutrosophic normal (or neutrosophic invariant)
subgroup of Gt

1 [I ] , and denoted by Ht
1 [I ] ⊵ Gt

1 [I ], if
xHt

1 [I ] = Ht
1 [I ] x, for all x ∈ Gt

1 [I ] .

Theorem 4.2 If H ⊵G, then Ht
1 [I ]⊵Gt

1 [I ] .
Proof. Suppose that H ⊵G. Let h ∈ Ht

1 [I ] and x ∈
Gt

1 [I ].
Since, h ∈ Ht

1 [I ] =⇒ ∃h1,h2 ∈ H, and indeterminacy I
such that h = h1 + h2I, and so,
Since, x ∈ Gt

1 [I ] =⇒ ∃x1,x2 ∈ G, and indeterminacy I
such that x = x1 + x2I.

=⇒ ∃x1−1,x2−1 ∈ G, and indeterminacy I such that

x−1 = x1
−1 + x2

−1I.

=⇒ ∃x1h1x1
−1,x2h2x2−1 ∈ H, and indeterminacy I

such that

x hx−1 = x1h1x1
−1 + x2h2x2

−1I ∈ Ht
1 [I ] .

=⇒ Ht
1 [I ]⊵Gt

1 [I ] .
Observation. In particular, if N(G) =

(
Gt

1 [I ] , ∗
)

is
a commutative (or abelian) neutrosophic group, then
xHt

1 [I ] = Ht
1 [I ] x.

Example 4.1 Let N(R)=
(
Rt

1 [I ] ,+
)

and N(Z)=(
Zt

1 [I ] ,+
)

be two neutrosophic groups under the
usual neutrosophic addition, then Zt

1 [I ] ⊵ Rt
1 [I ].

To show that Zt
1 [I ] ≼ Rt

1 [I ] . Let x, y ∈ Zt
1 [I ]

=⇒ ∃x1,x2, y1, y2 ∈ Z, and indeterminacy I such that
x = x1 + x2I and y = y1 + y2I

=⇒ ∃−x1, −x2, −y1, −y2 ∈ Z, and indeterminacy I
such that

−x = −x1 − x2I, and−y = −y1 − y2I

=⇒ x− y = (x1 + x2I) + (−y1 − y2I), and indetermi-
nacy I

= (x1−y1) + (x2 − y2) I ∈ Zt
1 [I ] . Hence

Zt
1 [I ] ≼ Rt

1 [I ]. Let x ∈ Zt
1 [I ] and y ∈ Rt

1 [I ].
=⇒ ∃x1,x2 ∈ Z and y1, y2 ∈ R indeterminacy I such
that x = x1 + x2I and y = y1 + y2I

=⇒ y+ x− y = (y1 + y2I) + (x1 + x2I ) − (y1 + y2I)
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1 [I ]

= (y1+x1) + (x2 + y2) I − (y1 + y2I)

= (y1+x1) + (x2 + y2) I − (y1 + y2I)

= ((y1+x1) − y1) + ((x2 + y2) − y2) I

= x1 + x2I ∈ Zt
1 [I ] .

Therefore Zt
1 [I ]⊵ Rt

1 [I ] .

Theorem 4.3 Let Ht
1 [I ] ⊵ Gt

1 [I ] and M t
1 [I ] ⊵ Gt

1 [I ]

be two neutrosophic normal subgroups of Gt
1 [I ]. Then

Ht
1 [I ] ∩M t

1 [I ]⊵Gt
1 [I ] .

Proof. From the premise, we have
(
Ht

1 [I ]⊵Gt
1 [I ]

)
∧

(M t
1 [I ]⊵Gt

1 [I ].
Since, Ht

1 [I ] ⊵ Gt
1 [I ] =⇒ xhx−1 ∈ Ht

1 [I ] , ∀ h ∈
Ht

1 [I ] , x ∈ Gt
1 [I ], also,

Since, M t
1 [I ] ⊵ Gt

1 [I ] =⇒ xmx−1 ∈ M t
1 [I ] , ∀ m ∈

M t
1 [I ] , x ∈ Gt

1 [I ].

=⇒
(
xhx−1) (

xmx−1)
= xhmx−1 ∈ Ht

1 [I ] ∩M t
1 [I ] ,

∀ h ∈ Ht
1 [I ] ,

m ∈ M t
1 [I ] , x ∈ Gt

1 [I ] =⇒ Ht
1 [I ] ∩M t

1 [I ]⊵Gt
1 [I ] .

Theorem 4.4 Let Ht
1 [I ] ⊵ Gt

1 [I ] and M t
1 [I ] ⊵ Gt

1 [I ]

be two neutrosophic normal subgroups of Gt
1 [I ]. Then

Ht
1 [I ]M

t
1 [I ] =M t

1 [I ]H
t
1 [I ]⊵Gt

1 [I ] .

Proof. Suppose that Ht
1 [I ]M

t
1 [I ] ̸= M t

1 [I ]H
t
1 [I ] =⇒

∃hm ∈ Ht
1 [I ]M

t
1 [I ] ∧ hm /∈ M t

1 [I ]H
t
1 [I ]

Since hm ∈ Ht
1 [I ]M

t
1 [I ] =⇒ h ∈ Ht

1 [I ] ∧m ∈ M t
1 [I ].

On the other hand, Since hm /∈ M t
1 [I ]H

t
1 [I ] =⇒ h /∈

Ht
1 [I ] ∧ m /∈ M t

1 [I ] =⇒
(
h ∈ Ht

1 [I ] ∧ h /∈ Ht
1 [I ]

)
∧(

m ∈ M t
1 [I ] ∧m /∈ M t

1 [I ]
)
, this is a contradiction,

henceHt
1 [I ]M

t
1 [I ] = M t

1 [I ]H
t
1 [I ] . To show that

Ht
1 [I ]M

t
1 [I ]⊵Gt

1 [I ] . Let x ∈ Gt
1 [I ].

Since
(
Ht

1 [I ]⊵Gt
1 [I ] =⇒ xHt

1 [I ] x
−1 ⊆ Ht

1 [I ]
)

∧(
M [I ]⊵Gt

1 [I ] =⇒ xM t
1 [I ] x

−1 ⊆ M t
1 [I ]

)
=⇒

xHt
1 [I ]M

t
1 [I ] x

−1 = x
(
xHt

1 [I ] x
−1xM t

1 [I ]
)
x−1 ⊆

Ht
1 [I ]M

t
1 [I ]. ThereforeHt

1 [I ]M
t
1 [I ]⊵Gt

1 [I ] by Pervious
theorem 4.1.

Theorem 4.5 Let Ht
1 [I ] ⊵ Gt

1 [I ] and M t
1 [I ] ⊵ Gt

1 [I ]

be two neutrosophic normal subgroups of Gt
1 [I ]. Then

Ht
1 [I ]M t

1 [I ] =
〈
Ht

1 [I ]∪M t
1 [I ]

〉
. Proof. Immedi-

ately from Theorem2.5.

Theorem 4.6 Let Ht
1 [I ] be a neutrosophic normal

subgroup of Gt
1 [I ]. Consider the set⌈

Gt
1 [I ]/H

t
1 [I ]

⌉
L =

{
xHt

1 [I ] : x ∈ Gt
1 [I ]

}
of all left

cosets of xHt
1 [I ] in Gt

1 [I ] . Define a neutrosophic binary
operation ∗ on Gt

1 [I ]/H
t
1 [I ] such that

xHt
1 [I ] ∗ yHt

1 [I ] = x ∗ yHt
1 [I ]

= (x1 + x2I) ∗ (y1 + y2I)H
t
1 [I ]

= (x1 + x2I) ∗ (y1 + y2I)H
t
1 [I ]

= ((x1 ∗ y1) + (x2∗y2) I) ,Ht
1 [I ] .

Then
(⌈
Gt

1 [I ]/H
t
1 [I ]

⌉
L, ∗

)
is a neutrosophic group.

Proof. 1. To show that ∗ is well-defined, we note
that Suppose that xHt

1 [I ] ,x′Ht
1 [I ] , yHt

1 [I ] and

y′ ∈
⌈
Gt

1 [I ]/H
t
1 [I ]

⌉
L such that(

xHt
1 [I ] , yHt

1 [I ]
)
=

(
x′Ht

1 [I ] , y′Ht
1 [I ]

)
.

=⇒
((
xHt

1 [I ] = x′Ht
1 [I ]

)
∧

(
yHt

1 [I ] = y′Ht
1 [I ]

))
,

since xHt
1 [I ] = x′Ht

1 [I ] =⇒ ∃h ∈ Ht
1 [I ] such that

x = x′h ⇐⇒ ∃x1, x2,x′1, x′2 ∈ G , h1, h2 ∈ H

and indeterminacy I such that

x = x′h ⇐⇒ (x1+x2I) =
(
x′

1 + x′
2I

)
(h1 + h2I)

=
(
x′

1h1
)
+

(
x′

2h2
)
I

⇐⇒ x1 = x′
1h1 ∧ x2 = x′

2h2.
Since yHt

1 [I ] = y′Ht
1 [I ] =⇒ ∃h′ ∈ Ht

1 [I ] such that

y = y′h′ ⇐⇒ ∃y1, y2, y′
1, y′

2 ∈ G , h′1, h′2 ∈ H

and indeterminacy I such that

y = y′h′ ⇐⇒ (y1+y2I) =
(
y′

1 + y′
2I

) (
h′

1 + h′
2I

)
=

(
y′

1h
′
1
)
+

(
y′

2h
′
2
)
I

⇐⇒ y1 = y′
1h

′1 ∧ y2 = y′
2h

′2. So,(
y′ x′)−1

(xy) =
((
x′

1 + x′
2I

) (
y′

1 + y′
2I

))−1
((x1+x2I)

(y1+y2I))

=
(
y′

1 + y′
2I

)−1(
x′

1 + x′
2I

)−1
(x1+x2I) (y1+y2I))

= (y′
1 + y′

2I)
−1(

x′
1 + x′

2I
)−1

(
(
x′

1h1+x
′
2h2I

)
(
y′

1h
′
1+y

′
2h

′
2I

)
)

=
(
y′

1
−1

+ y′
2

−1
I
) (

x′
1

−1
+ x′

2
−1
I
)

(
(
x′

1h1+x
′
2h2I

) (
y′

1h
′
1+y

′
2h

′
2I

)
)

=
(
y′

1
−1

+ y′
2

−1
I
) (

x′
1

−1
x′

1h1 + x′
2

−1
x′

2h2I
)

(
y′

1h
′
1+y

′
2h

′
2I

)
=

(
y′

1
−1

+ y′
2

−1
I
)
(h1 + h2I)

(
y′

1h
′
1+y

′
2h

′
2I

)
=

(
y′

1
−1
h1 + y′

2
−1
h2I

)
(y′

1h
′1+y′

2h
′2I) ∈ Ht

1 [I ] ,
and Ht

1 [I ]⊵Gt
1 [I ] . Hence

(xy)Ht
1 [I ] = (y′ x′)Ht

1 [I ]. Therefore, ∗ is well defined.

2. Assume that xHt
1 [I ] , yHt

1 [I ] , and zHt
1 [I ] ∈⌈

Gt
1 [I ]/H

t
1 [I ]

⌉
L . We have,(

xHt
1 [I ] yH

t
1 [I ]

)
zHt

1 [I ] =
(
(x1+x2I)H

t
1 [I ] (y1+y2I

)
Ht

1 [I) (z1+z2I)H
t
1 [I ]

=
(
(x1+x2I) (y1+y2I)H

t
1 [I ]

)
(z1+z2I)H

t
1 [I ]
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= ((x1+x2I) (y1+y2I)) (z1+z2I)H
t
1 [I ]

= (x1y1+ (x2y2) I) (z1+z2I)H
t
1 [I ]

= ((x1y1) z1+ (x2y2) z2I)H
t
1 [I ]

= (x1 (y1z1) +x2 (y2z2) I)H
t
1 [I ]

= (x1+x2I) ((y1z1) + (y2z2) I)H
t
1 [I ]

= (x1+x2I) ((y1+y2I) (z1+z2I))H
t
1 [I ]

= (x1+x2I)H
t
1 [I ] ((y1+y2I) (z1+z2I))H

t
1 [I ]

= (x1+x2I)H
t
1 [I ]

(
(y1+y2I)H

t
1 [I ] (z1+z2I)H

t
1 [I ]

)
= xHt

1 [I ]
(
yHt

1 [I ] zHt
1 [I ]

)
. Hence, ∗ is a neutrosophic

associative.

3. ∃eNH
t
1 [I ] ∈

⌈
Gt

1 [I ]/H
t
1 [I ]

⌉
Lsuch that

eNH
t
1 [I ] xH

t
1 [I ] = (e1+e2I)H

t
1 [I ] (x1+x2I)H

t
1 [I ]

= (e1+e2I) (x1+x2I)H
t
1 [I ]

= (e1x1+ (e2x2) I)H
t
1 [I ]

= (x1+x2I)H
t
1 [I ] = xHt

1 [I ] ,
and
xHt

1 [I ] eNH
t
1 [I ] = xHt

1 [I ], for all xHt
1 [I ] ∈⌈

Gt
1 [I ]/H

t
1 [I ]

⌉
L.

4. For all xHt
1 [I ] ∈

⌈
Gt

1 [I ]/H
t
1 [I ]

⌉
L =⇒ ∃x−1Ht

1 [I ] ∈⌈
Gt

1 [I ]/H
t
1 [I ]

⌉
L such that

xHt
1 [I ] x

−1Ht
1 [I ] = (x1+x2I)H

t
1 [I ] (x1+x2I)

−1
Ht

1 [I ]

= (x1+x2I) (x1+x2I)
−1
H

t

1 [I ]

= (x1+x2I)
(
x1

−1+x2
−1I

)
H

t

1 [I ]

=
(
x1x1

−1 + x2x2
−1I

)
Ht

1 [I ]

= (e1+e2I)H
t
1 [I ] = eNH

t
1 [I ] ,

and x−1Ht
1 [I ] xH

t
1 [I ] = eNH

t
1 [I ] .

Hence
(⌈
Gt

1 [I ]/H
t
1 [I ]

⌉
L, ∗

)
is a neutrosophic group.

Definition 4.2 Let N(G) =
(
Gt

1 [I ] , ∗
)

be a neu-
trosophic group, and N(H) =

(
Ht

1 [I ] , ∗
)

be a
neutrosophic normal subgroup of N(G) =

(
Gt

1 [I ] , ∗
)
.

Then
(⌈
Gt

1 [I ]/H
t
1 [I ]

⌉
L, ∗

)
is called the neutrosophic

quotient group of Gt
1 [I ] by Ht

1 [I ] .

5. Conclusion In this study, we examined the
neutrosophic left/right cosets, their properties, the
neutrosophic largening theorem, neutrosophic normal
subgroups, and quotient groups.
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