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ABSTRACT

The Article discusses neutrosophic left/right cosets, their properties, neutrosophic normal subgroups, and neutro-
sophic quotient groups with some theories and examples. The concept of Neutrosophic Groups was introduced
by Kandasamy and Smarandache in their work in 2006 as part of a broader field of research in neutrosophy.
Neutrosophic Groups are defined by classical NeutroAxioms according to the Neutrosophic Set theory, which
has type-1, The paper explores various structures related to Neutrosophic Groups, including examples of neu-
trosophic groups, neutrosophic left/right cosets, neutrosophic normal subgroups, Neutrosophic Lagrange’s theo-
rem, quotient groups, and their properties, several results of the theorems, and examples are demonstrated with

Gt [1].
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1. INTRODUCTION

Neutrosophic science is a modern branch of mathematics
that was born in the last three decades, approximately
by Smarandache. He developed the concept of degree
membership function from the intuitionistic fuzzy set into a
neutrosophic set. For a summary of the development of
the neutrosophic and plithogenic literature theories, we
recommend referring to a recent paper entitled " Three
Decades of Neutrosophic and Plithogenic Theories with
their Applications (1995 - 2024)." in [1]. The neutrosophic
group theory appeared for the first time in 2006 by
Kandasamy and Smarandache as an extension of classical
group theory in [2], and [3] respectively. At different and
successive periods, another group of researchers joined
to study the neutrosophic groups as follows: in 2012,
Agboola, Akwu, and Oyebo in their article Neutrosophic
groups and subgroups in [4]. In 2019, Abobala, Hatip,
and Alhamido published a contribution to neutrosophic
groups in [5]. In 2020, Agboola presented the article
Introduction to Neutrosophic Groups in [6]. In 2021, Rozina
published a review study on neutrosophic groups and

their generalizations in [7]. In 2024, Al-Odhari wrote the
axiomatic neutrosophic groups and neutrosophic subgroups
for the axiomatic neutrosophic groups in [8], and [9] and
another humble contribution to neutrosophic linear algebra
in [10], and [11]. Moreover, the author asks himself if there
is a theory of neutrosophic sets similar to the theory of
traditional or classical set theory. To answer this question,
we established a new foundation of the neutrosophic set
theory of three types in [12-17]. This work is being carried
out in parallel with work on the theory of nitrosophic
rings in [18-20]. This article presents neutrosophic cosets,
neutrosophic normal subgroups, and neutrosophic quotient
groups with their properties.

2. Neutrosophic Groups and Neutrosophic Subgroups
According to Neutrosophic Set Theory of G} [I]

In this section, we presented the neutrosophic binary
operations on neutrosophic sets of three types with their
properties, and | will rethink neutrosophic groups according
to the classification of neutrosophic sets of three types,
and using the symbolization of them, such as our work in
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[12], [17], and [13]. The concept of a neutrosophic binary
operation is very important in neutrosophic abstract algebra
and other structures of neutrosophic mathematics. So, | will
define the neutrosophic binary operations associated with
a neutrosophic set of three types related to neutrosophic
groups and examine their basic properties. Moreover,
| introduce some examples of neutrosophic groups and

neutrosophic subgroups.

Definition 2.1[12] Let G#() C U be a nonempty
classical set, then:

1. Gt [I]={g1+g2I:h1,h2€G} is a neutrosophic set of
type-1,

2. GL[I]={glu{g}:g€G} is a neutrosophic set of type-2,

3. GLII | ={(g91+921) U{g1}:91, 92€G} is a neutrosophic
set of type-3, where [ is an indeterminacy.

The perception of the neutrosophic set of type one
G' [I]. It goes back to Kandasamy and Smarandache in
[2, 3], while the neutrosophic set of type three, we propose
to treat it with the classical set G, when G does not
contain zero. However, we have proposed a perception of a
neutrosophic set of the second type, some of the concepts
related to which were studied in [12-17]. It may also
allow for the construction of some neutrosophic algebraic
properties. Of course, one can propose the neutrosophic set
using the concept of indeterminacy |, where I?=], 0.]= 0,
and 1.]=1.

Definition 2.2 [2]Let (G,x) be any group, and
(GUI) is given by:

(GUI) ={a+bl:a,b €G}.

Then the neutrosophic algebra structure N(G) =
{{GUI) ,*} is called the neutrosophic group, which is
generated by I and G under x.

Theorem 2.12]Let(G, *) be a group,
N(G) ={{(GUI), *} be the neutrosophic group,
then:N (G) . In general, it is not a group, and N(G) always
contains a group.

In the remainder of this section, we will review and
examine previous work on the neutrosophic group in [8,
9] and its relationship to the work of the nitrosophic
sets of three types in [12-17]. To improve this paper in
a way that serves the community of neutrosophic knowledge.

Definition 2.3 [8] Let G#0 C U be a nonempty
classical set, and

Gt [I] = {a+bl:a,b € G} is a neutrosophic set of
type-1. Consider x is a Neutrosophic binary operation on
G* [I]. Then the nautrosophic pair (GY [I],x) is called the
neutrosophic group, which is generated by I if it satisfies
the axiomatic conditions of a group:

NG;: Forallz ,yandz € N (G), (v *xy)*xz =z (y*2)

" associative law";

NGy: There exists ey = e+ el € N(G) such that
for all x xey= x =en*x” existence of an identity" and;
NG3: For all z € N (G), there exists y € N (G) such
that x xy =ey=y#*x" existence of inverse ". Thus,
a neutrosophic group is a neutrosophic mathematical
system N(G) = <G':5l [1] ,>x<> satisfying the axioms NG to
NG3. Otherwise, it is called a neutrosophic algebra structure.

Observations. Here, we modified Definition 1.3
in[8]. This means that one can be perceptive and try to
define a binary operation on GY [I] and check Defintion 1.3.
Let us claim that Definition 1.3 still works when replacing
Gt [I] by G5 [I] or G4 [I]. We recall that G* [I] = G4 [I]
iff G contains zero [12].

Theorem 2.2 If (G,*) is a classical group, then
(GY [I],*) is a neutrosophic group generated by I from G
as a neutrosophic set of type-1 under the same operation .
Proof. Assume that z,y,z € GY[I]. To check
Definition 1.3.

1. Consider z,y € G{ [I | = 3r1,22,y1,y2 € G and
indeterminacy I such that ¢ = 21 + 29l and y =
Y1 +yol
= dx1 y1,T2y2 € G and indeterminacy I such that
zYy = x1y1 + w2y2l
= zy € G} [I], so, « is a closure operation on G [I].
2. Consider  z,v,z € Gi I =
A(z1y1), 21, (x2y2) , 22 € G and indeterminacy I such
that (zy) = (z1y1) + (z2y2) I, and z = 21 + 221
= J(z1y1) 21, (z2y2) 22 € G and indeterminacy I
such that

(zy) z = (x191) 21 + (z2y2) 221

= (zy) 2 = (211) 21 + (2292) 221 € GY [I ]
= (zy)z = z(y2) = n1(n21)+22(ypze)l €
—_—

€G €G
GY [I']. Hence, x is an associative operation on G* [I].

3. Fey € GY[I] such that for all z € G![I] =
Jx1,x2,e1,e2 € G, and indeterminacy I such that

en *x = (e1 +eal) * (x1 + x2)

= (e1 xx1) + (eaxx2) I

=21 +29] = x, and

xxen = (x1+x2l) * (e1 +eal)

= (z1xe1) + (warea) I
= x1 + 22l = x. Since the identity
is unique in G, we have e; = es.
4. Vz € GY[I] = 3r1,22 € G and indeterminacy [
such that # = x1 + 2o = 3z; Y, 207! € G and
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indeterminacy I such that

el = a1 e G
= Iz = en,z0057! = e € G and
indeterminacy I such that

1

xxr T = xlml_l +$2£L’2_1I =e;+texl = eN € Gn]:. [I} .

Corollary 2.3 If (G,*) is an abelian group, then
(G4 [I],*) is a neutrosophic abelian group generated by
I and G as a neutrosophic set of type-1 under the same
operation .

Proof. It follows directly from Theorem 1.2.

Theorem 2.4 Let H be a subgroup of a group G,
then H! [I] is a neutrosophic subgroup of G [I] under the
same operation, where H} [I] is generated by I by H, and
G [I] is generated by G.

Proof. to show that
i 11

Suppose that H
Gt [1].

< G,
<
~—
N
Let z,y€ H:[I] == 3Jr1,22,y1,92 € H and

indeterminacy I such that

r=uwx1+x2l and y = y1 +yol
= Jz1, 29,91 L, y2~' € H and indeterminacy I such
that

x=ux1+aol and y~ L =y L4y T
= dx1 yl_l,xzyg_l € H and indeterminacy I such
that z y ' = zqy1 L 4+ zoyo 1T

= zy le H![I]| = H![I] G% [I]. By Theorem

<
~—
N
3.3in [9].

Example 2.1 Let Z = {0,4£1,42,...} be the set

of integer numbers. Then the neutrosophic integers of
type-1 is given by:

0, 0£1, 0+2I, 0+3I,
1, +£14+1, +1+21, +1+31,
zi|1) = 4242 +2+31,

+2, £2+47

Since (Z,+) is an abelian group under the usual
addition on Z , then (Zﬁ [I],Jr) is a neutrosophic
abelian group under the usual addition on Z! [I] of the
neutrosophic set of type-1. Consider the set H C Z,
where H = 3Z={...,—6,-3,0,3,6,...}. Then the
neutrosophic set HY [I ] of type-1 is given by:

Hi[I|={x+yl:2,yc H}

— {0,431, 461,...,3,3+3,3+61,...,6,6+ 31,6+
6/,...,n,n £3I,n+6I,...}. It is clear that H![I]

< ZU[I.
1]
N

Suppose that we take the neutrosophic integer set

of type-2.
0, 0,
) 41, +11,
Zy|1] = 49, 421

)

Under the usual neutrosophic addition. It does not form a
neutrosophic binary operation because if 2 and 37 are two
elements in Z5[I], then 2+ 31 ¢ Z4[I]. Example 2.2 Let
G = {a, b} be a classical set with the binary operation given
by Table (1).

Table 1. of the binary operation
>k a b

a a b
b b a

Form a group. Consider GY [I ] is a neutrosophic set of
type-1, then

+al, a+bl
Gl = Lig1,goeGy =4 T ’
1] ={on1+92L:01,92€G} { b+al, b+bl }

Define the neutrosophic binary operation * on G [I ] by
the following table:

Table 2. of the neutrosophic binary operation

* a+al | a+bl b+al b+ bl
a+al | at+al | a+0bl b+al | b+10bI
a+bl | a+bl | at+al | b+bl b+al
b+al | b+al b+bl at+al | a+bl
b+bl | b+0bl b+al | a+bl | a+al

It is clear that from Table(2). * is a neutrosophic binary
In addition, the
neutrosophic identity ey = e+ el = a4+ al, and the

operation, and associative on G [I].

neutrosophic inverse element are shown in Table(3).

Table 3. of the inverse neutrosophic elements
(g1tg2l) [a+al [a+bl [ b+al [ b+b]
(g1+92D)™" | atal | a+bl | b+al | b+bl

According to the previous argument, the neutrosophic
order of Paris N(G) = (G4 [I ],*) forms a commutative
neutrosophic group. Let H = {a} be a classical subgroup
of G. Consider H! [I ] is a neutrosophic set of type-1, then
HY[I]={h1+hal:h1,ho€H} = {a+al}. Define the
neutrosophic binary operation * on Hf [I ] by the following
table:

Table 4. of the neutrosophic binary operation
* a—+al
a-+al a—+al

It is obvious that H} [I ] is a neutrosophic subgroup of
I 74
G“[]:{a—i-a, a+ bl,

b+al, b+bl
Example 2.3 Let G = {1,-1,4,—i} be a classical
set of complex numbers under a multiplication of complex

} by Theorem 3.5 in [9].
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Table 5. for the closure of the neutrosophic binary operation.

numbers form a group. Consider G [I ] is a neutrosophic
set of type-1, then:

GY I ]={g1+921:91,92€G}.

1411,  1-11, V4dl, 1—il,
11, —1-11, A pil, —1—il
1411 i—11 i+l i—al
—i+4 17 —1— 11 —i+il —i—dl

Let (g1+g2l),(¢'1+9'2I) € GY[I] such that

(91 +921) * ("1 +9'21)) = ((9109"1) + (9209'2) I),
where e is a neutrosophic multiplication of complex
numbers.The binary operation as shown in Table(5).
According to Table(5), * is closed, since g1 ® ¢’; and
gaeg'y are closed in G. x is associative under e.

The neutrosophic elementey = 1+ I. Eachelement has a
neutrosophic inverse element, as shown in Table(6).

Table 6. for the neutrosophic elements.

Let (hi+hal), (Ry+h51) € HE[I'] such that
(hithal) = (Ry4+hoT) = ((hah}) + (hehb) I) .
The table is shown in Table(7).

Table 7. of the closure neutrosophic binary operation

. I+1 | 1-1T | -1+ | -1-1
147 | 147 | 1-T | -141 | -1-1
1-T | 1-1 | 1+ | -1-1 | -1+I
141 | =141 | -1-1| 141 | 1-1
-1-T | -1-1| -1+ | -1-1| 1+I

Hence, by Theorem 3.5 in [9]. Wededucedthat HY [I]isa
neutrosophicsubgroupof G [I]. Note that the neutrosophic
order v (H{[I]) =4, (GY [1]) = 16,andy (H{ [I])is
dividet) (G4 [I]) = 16. Definex:GY [I] xGY [1]+—GY [1]
such that

xxy = (21 +xol) * (y1 + y2I)

= (21 y1) + (x1 y2 + z2y1 +22y2) I,

11 -1-4

i+]

itil

LT\ LVl | 1=l | =140 | -1-T ) 144l

o 1=T [ 1= | L | 1 1= | LT | L4

-it]

i=il | =] —i=1 ] =il | ==l

=T =il | =l | ik =T | =i |

It is clear that the neutrosophic order of pari
N(G) = (Gi[I],%x) forms commutative neutro-
sophic groups. Let H = {1, —1} be a classical set, consider
H! [I']is a neutrosophic set of type-1, then

Hf [I ] ={hi1+hol:hi,heo€eH}.

-{h A

1+1,
—1+41,

V 2,y € Gt [I], where e is a multiplication of complex
numbers. * is not a neutrosophic binary operation on
G [I'], because, (1+11)* (1+11)=1+31 ¢ G4 [I].

Example 2.4 Let G = {1,-1,i,—i} be a classical
set of complex numbers. Consider G4 [] is a neutrosophic
set of type-2, then
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P

G4 [I]={gIU{g}:9€G}

1, 11,

_ -1, —11,

B i, il,
—i, —il

1. Define #:G% [I | xGY4 [I |——G4 [I ] such that
rxy = (z1+22I) * (11 + y2I)

= (z1+ y1)+ (22 +92) I,
Va,y € GY[I], where + is an
numbers. * is not a neutrosophic binary operation on
GL[I'], because if i and il € G4 [I], then i+ il ¢
I. Hence * is not a neutrosophic binary operation on
GL[I].
2. Define x:G4 [I | G5 [I ]G4 [I ] such that

addition of complex

xy,if  is not indetermenc and y

is indetermenc
TRy =
(zy) I,if z and y are an indetermenc

(zy) I 2 if z and y are not indetermenc

e denotes multiplication of complex numbers. * is a
neutrosophic binary operation on G4 [I | as shown in

Table(8).

Table 8. for the neutrosophic binary operation on G4 [I ].
* V=1 ¢ | = | [ | =T]| |-l
VL =1 ¢ | = I | =[] |l

e e B A Y A Y A B/
i R N O O B T B Y A R B |
=i | =t | ¢ | 1 [ =1 =l T -]
[ |1 |- |l 1| =T ||l

BRI VA VA ) B T B I A S B T R 7
17 Y I N A I T A 7 B B 7 B I B I |

| <l | | T | =[] | |-I

We see from Table(8) that there is a neutrosophic identity
element ey = 1. Every neutrosophic element in G4 [I ]
has no inverse; therefore, * has no neutrosophic elements.
Hence (Gé 1] ,*) is not a neutrosophic group.

Example2.5[8] Let Z¢={0,1,2,3,4,5} beaclassical
set and the neutrosophic set of type-1 is given by:

0,1,21,31, 41,51,

1,14+ 1,1+2[,1+3[,1+4I,1+5I,
92,2+ 1,24 21,2+ 31,2+ 41,2 + 51,
3,3+1,3+21,3+31,3+41I,3+51,
4,44+ 1,4+ 21,4+ 31,4+ 41,4 + 51,
5,5+ 1,5+21,5+31,5+41I,5+ 51,
and the order of v (Zg] [I]) = 36.

Zey 1] =

N (Zs)=(Z¢} [I] ) be a finite neutrosophic

group generated by I and Zg under addition mod-
ulo 6. Consider H![I] = {0,3,31,3 + 31} where
H = {0,3}. Since H}[I] is finite, as shown in
Table(9). HL[I | X Zst[1].

Table 9. of H{[I] X Zst[I].
s 0 3 31 3+31
0 0 3 3I 3+31
3 3 0 3431 31
31 31 3+31 0 3
3+31 3+31 31 3 0

Note that the neutrosophic order ¢ (Hi{[I ]) =4,
¥ (Z6} [I]) =36, and o (H{[I ]) is divides
¥ (Z6f [1]) = 36.

Example 2.6 Let Z3\{0}={1,2} be a clas-

. 1+1,1+ 21,
sical set and Z3! [I]\{O}:{ 94+ 11,2+ 21 }

be a neutrosophic set of type 1. De-

fine a neutrosophic binary operation

w1 Zsi [M\{0}xZ3% [ \{0}—Z3% [T} \{0} such that
wry= (z1+a2l) * (y1+y2l)= (z10y1) + (v2 0 y2)I),
where e is a multiplication of mod 3 on

Z3% [1]\{0} as shown in Table(10).

Table 10. for the neutrosophic binary operation .

®g 1+1 1+21 2+1 2421

1+1 1+1 1+271 241 2+ 21
14271 | 1+21 141 24271 2+1

2+1 241 2421 1+7 1+21
2+21 | 2421 241 1+21 1+71

It is clear that = is a closure, and it has a
neutrosophic identity element ey = 14I. Furthermore,
every neutrosophic element has an inverse, as shown
in the following table.

Table 11. for the neutrosophic binary operation x.
(g1+g2]) +1 [ 1+21 [2+41 [2+2]
(gigeD) " | 141 [ 1420 | 241 [2+21

Hence N(G) = (Zs{ [1]\{0},%) is an abelian neu-
trosophic group.

Note that. Ifx: Z3! [1]\{0}xZs! [1]\{0}—Z3} [1]\{0}
such that

(1131 =+ LEQI) * (y1 + yg[)

= (zr1ey1)+ (z1ey2+a2y1 +a2092)]1,

kY =

YV ox,y € Z3L [1]\{0} , where e is a multiplication of
mod 3 on Z3![1]\{0}. We see that from Table(12).

Table 12. for neutrosophic operation.

®,§ 1+1 1+21 2+1 2+21

1+1 1 1+21 2+1 2
1+2I | 1+21 | 1+21 2+1 2+1

2+1 2+1 2+1 1+27 | 1421
2+21 2 2+1 1421 1
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* is not a neutrosophic binary operation, because

it is not closure.

Definition2.4 Let N(G) = (G} [I],*) be a neutrosophic
group and N(H) = (H{ (I ],*) be a neutrosophic
subgroup of NG = (th [I ],*) If 2,y €GL[I ].
We said that x is neutrosophic congruent to y mod-
ule HY[I |, if 2y~ € HI[I ]. By symbolization,
vy~ e HI[I | < o=y (mod HI[I ]).

Theorem 2.5 The neutrosophic congruent relation
is a neutrosophic equivalence relation.

Proof.

1. Since H![I ] fv -1

This implies that x =

Gt [I], we have ey = zz
z (mod H![I ]). Thus =
is a neutrosophic reflexive relation.
2. Suppose that z =y (mod H![I ])
= =ay leHIT],
= (x1+zI) (1 +y2l)”

= (e +e)™) e,

€ H{[I ],

since H? [I]f\,G?L 1],
= (n+wD™)  (@+a) ™t enilr].

By Theorem 2.3, part 2 in [8],
= (y1+yel) (z1+az20)” €H{[I].

By Theorem 2.3, part 1 in [8],
eHi[I ],
= y =z (mod HI{[I]).

= ya:_l

Hence = is a neutrosophic symmetric relation.

3. Suppose that 2 =y (mod Hi[I ])A y =2z (mod
HE[I ),
cx=y (mod HI[I])

S ay e HHI 1= (31 4 ao]) (y1 4+ y2)

€HI[I ],
cy=z (mod HY[I ])=yz"te HI[I ]
= (g1 +y2l) (21 +2D) " € HIT ],

= ((501 +21) (11 +y21)71) ((y1 +y2I)
(Z1 -i-ZQI)_l) IS Hf [I] ,

since H{[I |3 Gi[Il =

((:m +a20) (y1 +y20) " (n1 +y21)) (z1+20) '€
H{[I ],

((w1+a2) (er+eal)) (21 +2)" " € H [1],
(w1 +@2) (21 +22) " € HY [1],

xz"t e HY I,

=2z (mod H{[I ]).

ol

Therefore, = is a neutrosophic transitive relation,

and consequently, = is a neutrosophic equivalence

relation.

GU[I'] and MI[I ]| <

Theorem 2.6 If HI[I | <
I <G iff

GY[I ], then HY[I | M}
HY[I |M{[I )=

Proof. Suppose that H![I |M![I ] <
veHY[I [M][I]

= 3h € H{[I |Am € M{[I ] such that z =
hm. Hence x € Ht[IJUMY [I], so

H{[I TM{[I )€ (H][I JuM{[I ]).

Also, if h € H}[I] = Jey such that h = hey =
HY[I) € HE[IJUMY [I], and if m € M} [I] = Jen
such that m = mey == M [I] C H! [IJUM? [1].

We conclude that

H{[I IM{[I'] = (H{[IJuM{[I]). Conversely,
suppose that H{[I|M{[I] = (H!{[IJUM{[I]). Let
x,y € HY [I) M} (1], since x € HE [I] MY (1]
:>EI(hEHt[ ])/\EI(mEMi5 [I]) such that =z = hm

= (b~ 1€Ht 1) A (m~teM{[1]) for
some y~! = h7lmT! = (mh)~", hence
ay~t = (hm) (mh)~'€ HY (1] M} (1) < G [1].

3. Neutrosophic Cosets and Their Properties
In this section, we present the neutrosophic left/right
cosets with their properties.

Theorem 3.1 Let N(H)=(H![I ],x) be a
neutrosophic subgroup of a neutrosophic group
N(G)=(G4[I],*), and =,y € Gi[I].
neutrosophic relation R on the neutrosophic group
GY[I] such as 2Ry & xy~! € HI[I], V z,y €
G! [I], then R is a neutrosophic equivalence relation
on Gt [I].

Define a

Proof. Suppose that z,y,z € GY [I].

1. Since, zz ! = (21 + aol)(zy +22l) "

= (xl —|—x2])(x1_1 + xg_lf)

= (351:5171 + 1‘2&32711—)

= (e1+eal) = ey € HL[I].
Hence, R is a neutrosophic reflexive relation.

2. Assume that zRy =

oyt = (21 + 220 (y1 +v2l) " € H (1]

1y -1 —1\ !
(™)) ™" = (@ + 2D+ 927

= (971)_1 aTh = ((y1 +y21)*1)_1(x1 +a2I)”

_ _ _ —1 —
==y x 1:(y1 1+y2 1[) (z1 +22l) !
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= (y1 +y2l) (z1 +a2D) " € HE[I].
Hence, R is a neutrosophic relation.

3. Suppose that zRy and yRz. Since,

TRy = xy~ = (21 + x21) (11 +y21)71 € Hi[I], and

YRz =y~ = (y1 +y2l) (21 + 221) " € HY (1.
= (2y™ ') (yz7') = ((551 +220)(y1 +y21)_1)
((yl +yol) (21 + 221)_1> .

= (zyly) 2! = ((Il +aal)(yr + D) (g1 + yzf))

(21 +ZQI)_1
= (we) 27l = ((z1 + z2I)(e1 +e21)) (21 +zzl)_1
= 227 = (21 +220) (21 + 221) ' € H} [I] = 2R=.

Thus
R is a neutrosophic equivalence relation on GY[I].

Hence R is a neutrosophic transitive relation.

A Description of the neutrosophic class of a neutro-

sophic element z € G} [I]. have,

8|

=[z] = {y € GY[I] :ny}

{veGiin ™t = (n +pol) (a1 +220) !
€ Hi 1]}

{yeGil]:ya™ =h & (y1 +yel) (w1 +220)”

= ((h1 + hy,I)) ,h € H[1]}
={yeGill]:y=ha & (y1 +y2I) = ((h1 + hy,I)
(x1 +x21)),h € H} [I]}

= Hi[I]z. R is called a neutrosophic right relation
on G [I] and H![I]z is a neutrosophic right-cosets
of HY[I] in GY[I] containing . The set of all
neutrosophic right-cosets of H?![I] in GY[I] denoted
by

G N/HLT )|, = {yeGiI]:yRa}, this neu-
trosophic set is called a neutrosophic quotient set.
Likewise, the neutrosophic relation is defined as

Ly & zty € Hi[I],Va,y € GY[I]. Liscalleda
neutrosophic left relation and 2 H! [] is called the set of all
neutrosophic left-cosets of H} [I | in G% [I] containing z,
denoted by: [G4 [I1/H} [I]], = {y € GL [I] : yLx} .

Corollary 3.2 If N(G)=(G[I]
tative (or abelian) neutrosophic group, then the

,%) is a commu-

neutrosophic right relation is equal to the neutro-

sophic left relation, and eyH{[I |=H![I ].

Proof. Suppose that z,y € G% [I] such that
TRy < xy ' = (x1 + x20) (11 erQI)_l € Hi [I

y Lo = (y1 +y20)"" € HE[I]

< ylx < zLy. Thus R =

enHU[I | ={exh:he HLI |}

= {(6N—|—6NI)*(h1+h2[) ren,hi,ho € H,

and indeterminacy I}

= {(enh1) +

and indeterminacy I}

(6Nh2)I:6N,h1,h2 € H,

={h:he H{[I ]}

=HI[I].

Theorem 3.3 Let N(H)=(H{[I ],*) be a neutro-
sophic subgroup of a neutrosophic group
N(G)=(G4 [I],*), then there is a one-to-one corre-
spondence between a neutrosophic left (right) coset
and a neutrosophic right-coset of H![I] in GY[I].
Proof. Let L= {zH{[I]:z€G}[I]} and

R = {H}[I]z:x € G} [I]}betwoneutrosophic left-
coset, and neutrosophic right-coset respectively. Define
f + L — R such that f(zH![I]) = Hi[I]a™"
VaHI[I] € L. Assume that xH![I |, yHI[I | € L
such that zH}[I] = yHL[I], As xH}[I]| = yH![I] =
dz1,2z2,y1,y2 € G such that

(y1 4+ y2I) Hi [1]

)

(21 +a2l) Hi [I] =

= (y1+y2D) " (x14220) eHL[T],

=(y+yal) ! (v1t2]) = (17 +y2 1)

(w1 a1 1) " reH! (1],

= H{[I](y 4y ) = H 1] (z17 " + 227 1)

= H{[Ily~" = H{ [[]a~ = [ (yH{ [1]) = f (zH] [1]) .

Suppose that f (fo [I]) =f (yH{ [I])
=Hi [IJa™ =H{ [I]y~!

:>:r( o

D7 =(a1+ wod)” ((y1+y21)71)_1
€Hj [I]
(o w2l) (") ) )
eHj [1]

=1+ x20) " (y1+yel) €H} (]

ﬁ((m—f— zol) " (yl+y21))71=(y1+y21)_
((x1+ IQI)_l)il eH![I]

= (y1+yel) ! ((1'1_1)714*(582_1) 11) —

(y1+y2D) " (w1 +a21) eHE (1]
= (w14 w20) Hy[I] = (y1+y21) Hi [1].
= aH} (1) =yH (1)

Therefore, f is a neutrosophic injective function.
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Suppose that H} [I|z€R. Since

HY [ a=H! [I] (z=1) " '=f («H! [I]) . Hence is

a neutrosophic surjective function, and consequently,
f is a neutrosophic bijective function.

Theorem 3.4 Let N(H)=(H}[I ],*) be a neutro-
sophic subgroup of a neutrosophic group
N(G)=(GY [I],*), then the neutrosophic elements
of H![I] is a one-to-one correspondence with the
neutrosophic elements of any neutrosophic left-coset/
a neutrosophic right-coset of H{[I | in G![I].

Proof. Consider H![I]} Gt [I], zeG{[I], and
xHY [I] is any a neutrosophic left-coset of H{[I]
in GY[I]. To show that there exists a one-to-one
neutrosophic function of H?[I] onto xHY[I].
Define a neutrosophic function f:H{[I |—aHY[I ]

f (k) =zhef (hi+hal) = (x1+a2]) (hi+hel) &

(($1h1)+($2h2)1), Vhe H{/ [I ]
Let h, W' €H![I ] such that h=Ph"; as
h=h'=f(h)=f (h)

=zh=zh'

= (:L’rl—xg[) (hl—‘thI) = (:I:l-i-ng) (h/1—|—h/21)

= ((z1h1) + (x2h2) I) = ((-Tlhll) + (l'Qh/Q) I) )
Vh, hIEHf [I]. Hence, f is well-defined.

Suppose that, f(h)=f (h,)

=zh=zh’

=z~ (zh)= 27! (mhl>

= (aflx) h = (357195) "

= ((1‘1_14-12_1[) (:El-l-l‘zf)) (h1+h21)

= ((ml_l-l-l’g_l]) ($1+IEQI)) (h/1—|—h/21)
= (($171w1+x271x2 I)) (h/1+h/21)
= (((61_161) + (62_162) I)) (h1+hal)
= (((ex™ er) + (27 e2) 1)) (Wr+h'21)

= (€1+621) (hl-l-hgf) = (61+€21) (hll-l—hlzf)

= (€1h1—|— (eghg) ]) = (€1h/1—|— (Ethg) I)

= (h1+hol) = (h’l—l—h’gI)

= h=h.
Therefore, f is a neutrosophic injective function.
Finally, assume that zhcxHY[I], where z G} [I]
and he H![I]. As he H[I], then f(h)=zh,
thus f is a neutrosophic surjective function, and

consequently, f is a neutrosophic bijective function,
and the neutrosophic order of

W (Hi [1]) =y (xH] [1])

Observation. By a similar argument, the neutrosophic
elements of HI[I ] are a one-to-one correspondence

with the neutrosophic right-cosets of H! [I]in G} [I].

Corollary 3.3 Consider Hf[I]} G [I].IfzeGY [1].
Then the neutrosophic order of H{ [I],zH![I], and
H![I]z are equals. That is

v (i [1]) = (eHi [1]) =v (Hi 1] ) .

By Theorem 3.3. As we saw from Theorem 3.1,
we can define neutrosophic left-relation/ neutrosophic
right-relation on GY [I] with respect to H{[I], there-
fore, the following definition results directly from
it.

Definition 3.1 Let N(H)=(H{[I ],*) be a
neutrosophic subgroup of a neutrosophic group
N(G)= <G§ [I],,*>, and z € GY[I]. Then, the sets
of the form

1. zHY[I | = {zh : h € H}[I]} is called a neutro-
sophic left-coset of H![I] in G![I], and

2. Hi[Ilz = {hx : h € HI[I]} is called a neu-
trosophic right-cosets of HY[I | in G![I], the
neutrosophic-element x is called a representative
of zH!{[I] and H}|[I]u.

Theorem 3.5 Let N(H) = (H![I],*) be a neutro-
sophic subgroup of a neutrosophic group

N(G) =(G% [I],*), and z,y € G} [I]. Then
sH{[I)=H![I | zeHHI |, and

Hi[l Jy=Hi[I |eyeH][I].

Proof.
Consider z € H![I ] to show that zH![I | =
HY[I ]. Suppose that y e zH{[I |.
=3 h € H}[I ] such that y=xh
= xh € HI[I ] by Theorem 3.1 in [9],
=y € H{[I ] hence zH![I | c H}[I ]. Con-
versely, Suppose that
yEeH{[I |=y=eny
=y = (xx_l) * Y

sy=a (z7y),
since z7 Y,y € Hi[I] and H{[I] JFGY[I]
=y=xtye H[I]

=y =ua (27'y) € xH![I], hence H}[I] C xH{[I],
and consequently,

HYI = xHY[I ]. On the other hand, let
x € G[I], and assume that zH![I | = HI[I | =
zey = x € xHLY[I | = HY[I |. The second part

uses a similar technique.

Theorem 3.6 Let NH=(H![I ],x) be a neu-
trosophic subgroup of a neutrosophic group
N(G)=(G[1],+), and ,y € Gt [I]. Then
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sHY[I |=yH[I | &y tze HI[I ], and
H{I Jo=H{[I lyeay™ € H{[I ].

Proof.
Suppose that

cHY[I |=yH{[I =y 'aH{[I | =y 'yH{[I ]

=y leHi[I | =H{[I ]

=y lz e HL[I ]. Conversely,
Suppose that y~lz € HI[I | = y lzHI[I ]
H{[I ] " by theorem 3.2"

= yy 'zH{[I | =yH{[I ]
= enxH{[I | =yHi[I ]

=aH{[I |=yH{[I ].

The second part is similar to the argument.

Example 3.1 Consider H![I | <N Gt [1], in
examples 2.2, then all neutrosophic left-cosets/ neu-

trosophic right-cosets of H![I | in GY[I] are given

by:

(a+al)H{[I |={(a+al)h:heH}[I]} ={(a+al)

(a+al)} ={a+al} = Hi[I].
(a+bI)H{[I |={(a+bl)h:heHI[I ]},
={(a+0bl)(a+al)}, and
={(a+0I)}.

(b+al)H{[I |={(b+al)h:heHI[I ]},
={(b+al)(a+al)}, and
={(b+al)}.

(b+bI)H{[I |={(b+bI)h:he H][I |},
={(b+0vl)(a+al)}, and
={(b+0l)}.

Example 3.2 Consider H![I | ¥ GY[I ] in exam-
ple 2.3, to find some neutrosophic left-cosets and
neutrosophic right-cosets of H![I ] in G%[I]. We
have

cHY[I] = {xh: h € HL[I]}
(1+N)H{[I]={(Q+1)h:hec H{[I]}

_{ (1+I)(1+1), (1+I)(1-1), }
Sl A+ (-1+T1), (1+1)(=1-1)

_{ 1+1), (1-1)
| (=141),

U

because (1+1I) er 1],

(1+4I) {1+th heH{[I 1}
{ (1+4I)( (1+ZI)(1_I)’}
1+44I) 1+zI (1+4il) (=1 1)
(1+414I) (1—4I),
{ (1-1) 1—7,[)}

— ) t[f] {(1-u)h heH [T},
(1—i)(1+1), (1—dl)(1-1),
{ (1—dil)(1+il), (1—4diI)(=1-1) }

(1—idl), (144l),
{ 1+1), 1+z])}'
- —{h(l— I):heH[I},
{ (1+1)( 1-1)(1-1), }
1+I (-1-0)(1-1) |’
) (1+I) _ t

smce(l—I)EHl I ].
HYT (1 +4l) ={h(1+il):he H[I]},

14+1)(144I), (1—1)(1+z‘1),}
1+ 1) (1+4il), (=1—1)(1+4)

[ ](

1

{ (1+4I), 1172[[)), }
t

{

l—i—zI
J(1—il)={h(1—4l):he H[I]},

(1+1) (1 —4I) (1—1) (1 —il),
—1+1) lfzI (=1 —1)(1—iI) }
B 1—il), (1+z[)
o {( L—il), (=1+3l) }

Note that. ¢ (H}[I]) =4,v (zH] [I]) = 4and
v (Hi [T]2) = 4.

Example 3.3 Consider H{[I | } Z![I] in
example 2.1. Then the following is the neutrosophic
left coset when z = (2+43I) is given by:

(2+30)+HI[I |={(2+3)+h:he HL[I ]}

(2431),(2+61),2,(2+9I),(2—3I),
(5431), (54 61),5, (5491, (5 3I),

= (8+3I),(8+61),é,(8+91),(8—31),

((24+n)+3I) ,.((2+n)+61),
(24n),((2+n)+9I),((2+n) —3I),

Theorem 3.7 Let N(H)=(H{[I ],*) be a
neutrosophic subgroup of a neutrosophic group
N(G)= <G‘fL [I],*>, and 2,y € GY[I]. Then either
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)

cHY[I ] = yH{[I] or xH{[I)NyH{[I] = 0f[I],
and either H [I|z = H{[I]y or Hi[I|aNH} [y =
0% [1].

Proof. Consider H{[I|3G[I]) and z,y €
Suppose that zHI[I|NyHI[I] # 0\ [I] = 3= €
cH{ [I| Az € yH![I] =3hi€H} [I]AShoeH} [I] such
that z = xh; Az = yhg

= zhy = yhg

=y tzhy =y lyho

= y_lxhl = enho
= y_lxhl =ho

= aH{ [I] = yH{ [1]”

by theorem 3.2". The second is similar. Definition

be a family of

3.2 [17] Let pn Hi[I]:aci
——

(0%
neutrosophic subsets of H![I], for any i = 1,2,3,

we said that

H![I]:a€iy is a neutrosophic
——

[e%
partition of H! [I].If satisfies the following conditions:

1. HII J#0L[I ], for any i=1,2,3, and Va €,

——
(e}
2. For each Hf [I ] and Hf [I ], then either
~—— \_\B,_./
(e
Hi[I'] = H{[I] or H[I|NH{[I] = 0[1],
—— ——~ —— N——
a B « B
Vi=1,2,3,
3. HI[1) =UH;][I].
\V.-/
€l

Corollary 3.8 Let Hi[I |3 G%[I]. Then
asHY{[I] = {azh:heHI[I|AzeG[I]} forms a
neutrosophic-partition of a neutrosophic group GY [I].

Proof. Let H![I] be a neutrosophic subgroup

of a neutrosophic-group GY [I]. Consider the neu-

trosophic partition-set oy = ¢ 2HY [I[]:a €
———

[e%

p}z{xh iz e GU[IIANhe HE[I],a iy,

where i R {1,2,3,...} pn is the set of all
neutrosophic left-cosets of H} [I] in G [I],

By Theorem 3.3, either zH![I] = yHY[I] or
cH{ [I)NnyHY[I] = 0, where z,y € GY[I]. Since
zHi[I] C  GY[I], for all z € GY[I] therefore

Ume [I] c Gt [I]. On the other hand, if z € GY[I],

ac€i
then x € zH} [I] C JzHL [I], hence
——

aci

Glal.

GY I c UzHL[I), thus, G [I]=JxHL[I], there-
S—— S——
aci agi
fore px is a neutrosophic partition of GY[I].
Example 3.4 Consider all the neutrosophic left
cosets of HI[I | in GY[I] in Example 2.2, and
according to Corollary 3.8, the neutrosoph

o =R zHYU[T J:a€iy, i=/{1,2,3,4},
on= 1< (a+al) HY [T ]|, (a+bI)Hi[I],
1 2
(b+al) HY [T ], (b+bI)HL[T |3,
3 4
and pp=

{(a+al)},{ (a+bI)},{(b+al)}, {(b+bI)}
—_—— —— —— Y—

1
By definition 3.2, we have,

1. xHY [T |#04 [T ], for any aci and i={1,2,3,4},
——

2. oHL [T |NaH [T |20 (1 ], aB, and
—_— Y

acgi BEi
3. GY[I |=J=HY [T ].
aci

Definition 3.3 Let N(H)=(H!{[I ],*) be a
neutrosophic subgroup of a neutrosophic group
NG=(G{ [I],*) with |G} [I]| neutrosophic finite.
The neutrosophic number of distinct neutrosophic
left-cosets / distinct neutrosophic right-cosets, written
(GY[I]: H{ [1]], of HI[I] in Gi[I] is called the
index of H}[I] in Gt [I].
prove the Lagrange theorem for neutrosophic sets.
Theorem 3.9 (Lagrange's theorem) Let

N(H) :<H{ [1 ],*> be a neutrosophic subgroup

of a finite neutrosophic group N(G)=(GY[I],*),
then the neutrosophic order of HY (1] di-
vides the neutrosophic order of Gt (1],
symbolically, v (G [I]) = [GY [I] : H{ [1]] v (H} [1]) or
1 (1) |64 [1).

In the next theorem, we

Proof.
trosophic group, so the neutrosophic number of
neutrosophic-left cosets of H}[I] in GY[I] is finite.
Consider the neutrosophic elements:

From the premise GY[I] is a finite neu-

1 = w11 +x12l,20 = wo1 + 292l,..., 2 =
Tnl + Tnpol such that the neutrosophic  set:
{x1HI[I],2oHL[1],... 2 H} [I]} is  the  set
of all distinct neutrosophic left-coset
of HI[I] in GY[I]. Then, by using Corollary
32, the set {wH![I],x2H}[I],... ,z H! (1]}

forms a neutrosophic partition

elements

of a neutrosophic
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group GY[I], hence G{[I] = Ul ,z;H{[I]and
o HU I NajHE[I) = L[] for all i # j, where
1 < i,j < n, therefore |G![I]: H! [IH = n, and

¢ (G [I) = ¢ (erHL (1)) + - + 4 (znH{ [1]) . So, by
using Corollary 3.8, 9 (H{ [I}) = (lef [I]) for all 1,
1 < i < n, therefore
v (G1) = v (H 1) + -+ ¢ (H [1])
n—times

= ny (Hi [1])

=[Gy (1) HY[1]]v (HL[1]).
Thus, the neutrosophic order of H! [I]divides the neutro-
sophic order of G [I].

4.Neutrosophic Normal and Neutro-
sophic Quotient Groups

In section 3, we saw that a neutrosophic subgroup H? [I ] of
type-1 of a neutrosophic group G [I] of type-1 induces two
decompositions of GY [I], namely, the first by neutrosophic
left-cosets and the second by neutrosophic right-cosets.
This means that G [I] can be expressed as a disjoint union

of distinct neutrosophic left/right cosets.

Subgroups

Theorem 4.1 let NH=(H{[I],) be a neutro-
sophic subgroup of a neutrosophic group

N (G)=(G[I],*). Then, the following neutrosophic
propositions are equivalent:

N
5
=

=H{ 1|z, V2 eG[I],

C Hi[]z, Vo € G{[I] or Hi[I]z C
I,VzeGt[],

4. zH![I|z=t C HL[I), VxeGt[]],
zhe=t € HY[I], Yz e GY[I], he HL[I

6. zH![[|x~1 = HI[I], Yz e GL[I].

- oHY |
3. zHY|
il
il

o

Proof. Assume that R = £ <= xH} [I| = H! [I]z " by
Theorem 3.1 and Definition 3.1 in the previous section".
< zH} [I] C H} [I]2" by Theorem 3.4 € [12]”.
Let x € G4 [I].
— zH!{ [z CH [ 27!
— cHi[I]27' C Hi[I]en
— zHL Iz~ C HL[I] " by Corollary 3.1

in the previous section”.

L]

— enHI [Tzt C xilHi [1]

—a lzHi[Iz7' CaH

e Hi[[2z7! o HY 1]
— Hi[laz"'zC x_lHi Iz
]

<~ Hi[I]lex C ac_lHi 1]z

e Hi [ Ca'Hy [Nz =2 'Hy 1] (z7) "

According to Theorem 4.1, we use any neutrosophic
proposition to define a neutrosophic normal (or neutrosophic
invariant) subgroup of GY [I],

Definition 4.1 Let N(G) = (Gi[I],*) be a neu-
trosophic group, and N(H) = (Hf [1] ,*) be a
neutrosophic subgroup of N(G) = (G?L (1] ,*). HY[Iis
called a neutrosophic normal (or neutrosophic invariant)
subgroup of G% [I], and denoted by H![I]> Gt [I], if
xHY[I) = HY 1]z, for all z € GY [1].

Theorem 4.2 If H > G, then Hi [I]>GY [I].

Proof. Suppose that H>G. Let h € H{[I] and z €
Gt [1].

Since, h € HY [I] = 3h1,h € H, and indeterminacy I
such that h = h1 + hal, and so,

Since, z € GY [I] = 3x1,22 € G, and indeterminacy [
such that ©x = x1 + z21.

= 32171, 257! € G, and indeterminacy I such that

= xlfl —|—x271[.

— 3$1h1x1_1,x2h2$2_1 € H, and indeterminacy [
such that

z he ' = zihizy 4+ zohoze M € H! [1].

= H} [I|>G4 [T).
Observation. In particular, if N(G) = (GY[I],*) is
a commutative (or abelian) neutrosophic group, then
zH} (1] = HY [I] 2.

Example 4.1 Let N(R)= (R¢ [I],+) and N(Z)=
(Z% [1],+) be two neutrosophic groups under the
usual neutrosophic addition,  then  Z![I] > R![I].
To show that Z![I] < R![I]. Let z,y € Z}[I]
= dz1,22,Y1,Yy2 € Z, and indeterminacy I such that
r=ux1+ a2l and y = y1 +y2!

= d—x1, -2, —Y1,—Yy2 € Z, and indeterminacy [
such that

—z = —x1 —x2l, and—y = —y; —yal
= v —y = (1 +x20) + (—y; —y2I),
nacy I

and indetermi-

= (z1—y1) + (z2 —y2) I € Z! [I]. Hence
ZL I < RE (1) Letz € Z{ [I] and y € RY [1].
= dr1,29 € Z and y1,y2 € R indeterminacy I such
that * = 21 + 22l and y = y1 + yal

= y+z—y=(y1 +y2l)+ (v1 + 220 ) — (y1 +y21)
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= (y1+z1) + (z2 +y2) I — (y1 +y2I)
= (y1+x1) + (z2 +y2) I — (y1 +y2I)

= ((y1tz1) —y1) + (w2 +y2) —y2) I
=x1+£132[€zt1 [I]
Therefore Z! [I] > R! [1].

Theorem 4.3 Let H![I] > GY[I] and M![I]> Gt (1]
be two neutrosophic normal subgroups of GY [I]. Then
HY 1) 0 M 1) & G (1.

Proof. From the premise, we have (Hf 1> GY [I]) A
VAR

Since, H{[I|> G [I] = zhe=1 € HY{[I],V h €
HY[I], z € GY [1], also,

Since, M} [I)>GL[I] = ama~t € M}[I],Y m €
M), » e GY[I.

= (xhxil) (xmafl) =xzhma~! € HI N M} 1,
vV he Hi],

me M [I], € GY[I] = H} [I]n M} [I]>GY[I].

Theorem 4.4 Let H![I]> GY[I] and M![I]> Gt (1]
be two neutrosophic normal subgroups of GY [I]. Then
HY [1] M (I} = M IV H{ [1]= G} [1].

Proof. Suppose that H{ [I] M} [I] # M{[I| HE [I] =
Ihm € HE [I) ME IV A hm & M} (1) HE [

Since hm € H} [I) M} [I| = h € H! [I] Am € M![I].

On the other hand, Since hm ¢ M} [I|H{[I] = h ¢
H{[I]Am ¢ M{[I] = (he H{[IJAh¢& H{[I]) A
(m e MH[IJAm ¢ M? [I]), this is a contradiction,
henceH! [I] M} [I] M| HY[I]. To show that
HE [T ME[I)>GY (). Let 2 € GY [1).

Since (Hi[1>GL 1] = aH{ [Tz~ C HL[I]) A
(M [I]>GY 1) = aM{ [I]2~1 C M} [1]) =
cHY [N ME[I27Y = a(aH) [z taM}[1])2™ C
HY [I] M} [1]. Therefore HY [I] M} [I] > GY [I] by Pervious
theorem 4.1.

Theorem 4.5 Let H![I]> G [I] and M![I]> Gt (1]
be two neutrosophic normal subgroups of G% [I]. Then
H{[I1M{[I] = (H{[I]uM{[I]). Proof. Immedi-
ately from Theorem2.5.

Theorem 4.6 Let H![I] be a neutrosophic normal
subgroup of G! [I]. Consider the set

[GL/HL[1]], = {«H][I]:2 € G [I]} of all left
cosets of zH! [I] in G% [I]. Define a neutrosophic binary
operation * on GY [I]/HY{ [I] such that

cH I+ yHY [I) = o xyH] [I]
= (z1 +x20) * (y1 + yoI) HY [1]

= (z1 +x20) * (y1 + yoI) HY [1]

= ((z1#y1) + (w2xy2) 1) HY 1]
Then ([GY [1]/HY [I']],*) is a neutrosophic group.

Proof. 1. To show that * is well-defined, we note
that Suppose that zH? [I],2'Ht [I], yH? [I] and

/

y € {Gfi [I]/HY (I HL such that
(L (1), v 1) = (/B (1)) ).

= ((«H] [1] = 2"HI [1]) A (yH1 1] = y"H{ [1]))
since zH{ [I] = 2’ H! [I] = 3h € H{ [I] such that

= a2'h <= 3%1, Ig,l‘/1, I/Q eG R h1, ho € H
and indeterminacy | such that

r=1a'h<— (x1+x2l) = (.%‘/1 -l—.rlgf) (h1 + hol)
= ({tllhl) + (:L'lghg) I
<= xr = :L'llhl Nxo = Ilghg.

Since yHY [I] = y'H! [I] = 31’ € H! [I] such that

y=y'h <= Iy, y2,9¥'1, y'2 €G, W1, by €H
and indeterminacy | such that

y=y'h = (ntyal) = (y'1 +y'21) (W1 + h'2l)
= (¥'1h1) + (v/'2h'2) T
< y1 =y 1h1 ANy2 =y'5h's. So,
(v #) " (o) = ("1 +a'21) (o1 +9/aT)) " ((@1+a2)
(y1+y2I))
=1+ ylzf)il (¢'1 +m’21)71 (x1+x21) (y1+y21))
= 1+ 0D (@1 +22D) T (2 1kt ohal)
(' W 14y ol 21))
= (2/171 + 9/2711) <l‘/171 + $/2711)
((2'1ha+a'2hal) (y'1h'1+y o 21))
= <y/1_1 + y/2_1]> (m’l_lxllhl —|—m'2_1$’2h21>
(' h'1+y oh/ o)
= (?/1_1 +y’2_1I) (h1+hal) (v 1h' 14y oh'2)

= (2/171]11 —|—y/271h21> (y'1h/1+y' ol 20) € HY[I],

and H! [I]> Gt [I]. Hence

(zy) HY [I] = (v 2') H [I]. Therefore, * is well defined.
2. Assume that zH![I],yH![I], and zHI[I] €
(G4 [1]/H{[I]], . We have,

(zH{ [IyH] [1]) 2H{ [I] = ((z1+220) H [1] (y1+yal)
HY (1) (z1+221) Hi [1]

= ((ortwal) (yiryel) HY 1)) (21+220) HY 11]
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= ((z1+w2]) (y1+u2l)) (21+220) HY (1]
(z1y1+ (z292) I) (21+220) HY [I]
((z1y1) 21+ (z2y2) 221) Hi [1]

(z1 (y121) +2 (y222) I) HY [1]
(
(
(

w1+a2l) ((y121) + (y222) I) Hi [1]

w14ol) ((y1+y2l) (21+221)) Hi [1]

U] ((y1+y2l) (21+2210)) HY [1]

{ 1) ((y1+yel) Hi (1] (21+221) Hi [1])

= xH{ [I] (yH} [I]zH! [I]). Hence, x is a neutrosophic
associative.

x1+aol) H
(xl -l—l‘g])

3. JenH} [I] € [GY [I]/H} [ ]] zsuch that

enH [I2HL 1] = (e1+eal) H [I] (x1+x2D) HY (1]

(e1+eal) (z1+mal) Hﬁ [1]
(e171+ (eaw2) I) H [1]

(x1+x21) H [

and
le[I}eNH 1] =
Gy n/HL 1],

zHL[I), for all zH![I] €

4. For all zHY [I] € [GY[1]/HL (1], = Jo~1HE[I) €
(G4 [1]/H} [I]] , such that

aHY I o~ HE (1) = (21+20]) HE [1] (w14221) " HE [T

t

= (z14wol) (z1+a2D) " H [I]

= (z1+wz2) (.73171—‘1-1‘271]) Hi [1]

= (:L’lx171 + xgxzilf) H{/ [I]

= (extea]) Hi [I] = e H{ [1],
and L HY [IzHY [I] = en HE [1].
Hence ([GY [1]/H! (I HE’ %) is a neutrosophic group.
Definition 4.2 Let N(G) = (Gi[I ,*) be a neu-
trosophic group, and N(H) = (H![I],*) be a
neutrosophic normal subgroup of N(G) = (G [I],%).
Then ([GY[I]/H{[I']],,*) is called the neutrosophic
quotient group of G* [I] by H! [I].
5. Conclusion  In this study, we examined the
neutrosophic left/right cosets, their properties, the
neutrosophic largening theorem,
subgroups, and quotient groups.

neutrosophic normal
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