


Phytochemical Screening of Ethanol and n-hexane Extracts of the Plant Parts and Callus of *Pulicaria jaubertii*

Fathia M. N. Salam^{1,2 *}, Fatima A. Alhadi¹, Ebraheem A. A. Al-Nawd³, Enas J. Al-Sanabany¹ and Esam M. Aqlan²

¹Division of Botany, Department of Biological Sciences, Faculty of Sciences, Sana'a University, Sana'a, Yemen,

²Department of Biology, Faculty of Sciences, Ibb University, Ibb, Yemen,

³Department of Biochemistry, Faculty of Laboratory Medicine, Jiblah University for Medical and Health Sciences, Yemen

*Corresponding author: malakplant@gmail.com

ABSTRACT

Pulicaria jaubertii is an aromatic and medicinal plant belonging to the family Asteraceae. Previous studies found that this plant contains various important phytochemicals. However, these studies have not covered the identification of these compounds found in its callus produced by micropropagation. This study screens and compares, for the first time, the phytochemicals found in the ethanol and n-hexane extracts of this plant's parts and callus. Native plant parts were collected and washed. Some of them were cultured on Murashige and Skoog medium to produce callus, and the others were dried. Each sample was then powdered and extracted by ethanol and n-hexane solvents and screened for the presence of some biologically active phytochemicals. Screening tests in the ethanol extract revealed the presence of alkaloids, flavonoids, saponins, reducing sugars, cardiac glycosides, carbonyls, phenols/tannins, phlobatanin, terpenoids, and steroids in the callus and most of the plant parts. n-hexane extracts revealed the presence of fewer phytochemical groups in the callus and plant parts. In conclusion, ethanol and n-hexane extracts of plant parts and callus of *P. jaubertii* contain several bioactive compounds. Interestingly, callus extracts revealed some compounds that are not found in certain plant parts. Further studies, including extraction by other solvents, and the use of more advanced separation techniques are recommended.

ARTICLE INFO

Keywords:

Pulicaria jaubertii, Phytochemicals , Callus, Ethanol extract, n-hexane extract

Article History:

Received: 17-February-2025,

Revised: 29-April-2025,

Accepted: 13-May-2025,

Available online: 30 June 2025.

1. INTRODUCTION

Pulicaria jaubertii E. Gamal-Eldin, which is also called *Pulicaria orientalis* Jaub. and Spach., is an endemic plant to Yemen and is locally known as "Alkhaaoah" or "Anssif." It belongs to the family Asteraceae and is traditionally known as a culinary and medicinal plant for several conditions, including fever, urogenital system disorders, malaria, colds, inflammation, and symptoms associated with microbial infections [1-4].

Although it was reported in the literature that this plant has various therapeutic and biological activities, phytochemical studies on this plant are limited [5], and most of the available studies were carried out on the essential oil (EO) extracted from its aerial parts [4-7]. Many studies

performed on other species belonging to the same genus [8-16] have revealed the presence of various biologically active compounds like flavonoids, tannins, triterpenoids, saponins, alkaloids, cardiac glycosides, reducing compounds, phytosterols, coumarins, phenols, glucosinolates, terpenoids, and steroids.

Usually, these compounds are obtained from the naturally grown plants. However, obtaining secondary metabolites from them could be hampered by some problems, such as climate change, the possibility of extinction of the plant generation, the probability of obtaining insufficient amounts of bioactive metabolites, and the inability to produce a highly effective and standardized medicine [17-19].

Despite the fact that the natural growth of *P. jaubertii* in the wild is gradually declining [20], some modern techniques could be applied to improve its production, including micropropagation techniques [21, 22]. These techniques involve the induction of the formation of callus, an undifferentiated mass of cells produced *in vitro* from the inoculated explant. Callus culture techniques are considered a useful tool to produce large amounts of active phytochemicals and to yield a large scale of novel products and several classes of therapeutic phytochemicals under controlled conditions [23].

Identifying and comparing these phytochemicals produced from the mother plant with those produced from the yields of micropropagation techniques, including callus culture, is of great importance to identify the benefit of implementing these techniques to improve the amounts and types of these bioactive compounds that could be used for therapeutic purposes [24–26].

To the best of our knowledge, there are no previous studies investigating the phytochemical constituents of the plant parts or the callus of *P. jaubertii*. This study aimed to screen and compare the bioactive phytochemical classes found in the ethanol and n-hexane extracts of different plant parts of *P. jaubertii* grown in the wild and those found in the callus produced in Murashige and Skoog (MS) medium (1962) [27].

2. MATERIALS AND METHODS

2.1. STUDY DESIGN AND AREA

Plant micropropagation was conducted at the Tissue Culture Laboratory, Department of Biology, Faculty of Science, Ibb University, and the extraction and screening of phytochemicals were performed at the Department of Pharmacy, Faculty of Medical Sciences, University of Sciences and Technology, Ibb branch, Yemen, during the year 2021.

2.2. PLANT MATERIAL

Different parts (leaves, stems, roots, and flowers) of *P. jaubertii* (Figure 1) were collected from different places in Ibb city, Yemen, during the period from March to April 2021.

The sample was identified at the Biology Department, Faculty of Sciences, Ibb University. Samples from each plant part were selected and washed. Some of the collected samples underwent *in vitro* propagation, and the others were dried, powdered, and stored apart in labeled dark glass bottles at the Herbarium of the Faculty of Sciences, Ibb University.

2.3. METHODS

2.3.1. Preparation of the Crude Plant for Extraction

Each collected plant part was initially washed thoroughly (3-4 times) with tap water. This was followed by washing with double-distilled water, and then they were dried using blotting papers. The washed plant materials were covered with gauze and kept to dry under ambient shaded conditions for 7 days.

2.3.2. Callus Production

As performed by Salam et al., [28], the plant parts (ex-plants) were surface-sterilized and inoculated in full MS medium, containing various concentrations and types of cytokinins: Kinetin (Kin) or 6-benzylamino purine (BAP), and auxins: 1-naphthalene acetic acid (NAA) or indole-3-

Figure 1. Morphology of *Pulicaria jaubertii* native plant.

acetic acid (IAA). Seeds were the only explants capable of producing callus successfully within a period of 1-2 weeks. The hormonal formula that yielded the highest callus induction rate and favorable properties was 0.25 mg/L Kin and 1.0 mg/L IAA. All calli obtained from these formulations (Figure 2) were collected after 8 weeks of initial culturing. They were then washed and dried in an oven at 45°C for a duration of 7 days.

The dried plant parts and callus were ground apart to get fine powders using a mixer grinder (GEREMI, China) and were kept at 4°C in labeled dark glass bottles. Each one of the powders was extracted in the Soxhlet appa-

ratus using ethanol or n-hexane solvent, as performed by Venkatesan *et al.* [29]. Briefly, 100 g of each sample was mixed with 500 mL of the solvent and subjected to hot extraction in the Soxhlet apparatus for 72 hours at a proper temperature below the boiling point of each solvent.

Figure 2. Morphology of *Pulicaria jaubertii* callus produced on MS medium.

2.3.3. Preparation of the Plant Parts and Callus Extracts

The extracts were then filtered by using Whatman filter paper (No. 1). The collected extracts were finally concentrated using a rotary evaporator (RE-300DB evaporator, Stuart) set at 40°C. Then, they were stored at 4°C for the phytochemical analysis. Finally, each dry residue was dissolved in the corresponding solvent to make a solution of 1 mg/mL. These solutions were used for the phytochemical screening tests.

2.3.4. Preliminary Phytochemical Screening

Based on Venkatesan *et al.* [29], Adetuyi and Popoola [30], Trease and Evans [31], Sofowora [32], Harborne [33], Sofowora [34], and almasehali [35], the following tests were carried out in each extract to determine the presence of selected phytochemical classes with potential biological activity.

2.3.4.1 Test of Alkaloids

A weight of 0.2 g of each extract was mixed with 2% sulphuric acid in a separate test tube and warmed for 2 minutes. The mixture was then filtered in a new test tube. A few drops of Dragendorff's reagent were added. The formation of orange or reddish-brown precipitates indicates the presence of alkaloids.

2.3.4.2 Test of Flavonoids

A weight of 0.2 g of each extract was dissolved in

dilute sodium hydroxide, followed by the addition of dilute hydrochloric acid. A disappearing of the yellow coloration confirms the presence of flavonoids.

2.3.4.3 Test of Saponins

A weight of 0.2 g of each extract was mixed with 20 ml of distilled water and boiled and filtered. About 10 ml of the filtrate was then transferred to a new test tube and mixed with 5 ml of distilled water and gently shaken. The formation of a stable, persistent froth. A few drops of olive oil were then added and shaken vigorously. The test is positive for saponin if frothing appears as a creamy cluster of small bubbles.

2.3.4.4 Test of Reducing Sugars

An aliquot of 2 ml of each extract was transferred to a separate test tube, diluted in 5 ml of distilled water, and filtered. A few drops of Fehling's solutions A and B were added to the filtrate and boiled for 2 minutes. The observation of an orange-red precipitate indicates the presence of reducing sugars.

2.3.4.5 Test of Cardiac Glycosides

A 5 ml aliquot of each extract was treated with 2 mL of glacial acetic acid mixed with one drop of ferric chloride solution. This was followed by careful addition of 1 mL of concentrated sulphuric acid carefully. The formation of a brown ring at the interface indicates a deoxysugar characteristic of cardenolides. Similary, a violet ring may also appear just below the brown ring while in the acetic acid layer, in the same manner a greenish ring may appear just gradually throughout the thin layer.

2.3.4.6 Test of Terpenoids

A weight of 0.5 g of each extract was mixed with 2 ml of chloroform in a separate test tube. Concentrated sulphuric acid was then added along the side of the test tube carefully to form a layer. The tube was then observed for the appearance of reddish brown coloration in the interface, which may be formed when terpenoids are present.

2.3.4.7 Test of Carbonyl

A quantity of 2 ml of each extract was transferred to a separate test tube, and few drops of 2,4-dinitrophenylhydrazine solution were added. The tubes were shaken and observed immediately for the formation of yellow crystals, which denotes the presence of carbonyl.

2.3.4.8 Test of Phenols and Tannins

A quantity of 0.5 g of each extract was mixed with distilled water and heated in a water bath. This mixture was then filtered and ferric chloride solusion was added. The tubes were visually inspected for the presence of dark green or a blue-black coloration, which indicates the presence of phenols/tannins.

2.3.4.9 Test of Phlobatanin

A weight of 0.5 g of each extract was dissolved in distilled water and filtered. A 2% hydrochloric acid solution was added to the filtrate and boiled. The formation of a red precipitate confirms the presence of phlobatanin.

Table 1. Preliminary phytochemical screening of ethanol extracts of *Pulicaria jaubertii* plant parts and callus

Phytochemical	Leaves	Stems	Roots	Flowers	Callus
Alkaloids	+	+	+	+	+
Flavonoids	+	+	+	+	+
Saponins	+	+	+	+	+
Reducing sugars	+	+	+	+	+
Cardiac glycosides	+	+	+	+	+
Terpenoids	+	+	+	+	+
Carbonyls	+	-	+	+	+
Phenols/Tannins	+	+	+	+	+
Phlobatanin	+	+	-	+	+
Steroids	+	+	+	+	+

Table 2. Preliminary phytochemical screening of n-hexane extracts of *Pulicaria jaubertii* plant parts and callus

Phytochemical	Leaves	Stem	Root	Flower	Callus
Alkaloids	-	-	-	-	-
Flavonoids	+	-	-	+	-
Saponin	-	-	+	-	-
Reducing sugars	-	-	+	-	-
Cardiac glycosides	+	+	+	+	+
Terpenoids	+	+	+	-	+
Carbonyl	-	-	+	+	+
Phenols/Tannins	-	+	-	-	-
Phlobatanin	-	-	-	-	-
Steroids	+	+	+	+	+

2.3.4.10 Test of Steroids

Two milligrams of each dried extract were dissolved in acetic anhydride, boiled, cooled, and then 1 ml of concentrated sulphuric acid was carefully added along the sides of the test tube. The mixture was then observed for the color change from violet to blue or green, which indicates the presence of steroids.

3. RESULTS

Table 1 shows the results of the phytochemical profiling of preliminary screening tests of the ethanol extracts, which reveal the presence of alkaloids, flavonoids, saponins, reducing sugars, cardiac glycosides, terpenoids, phenols/tannins, and steroids in all the plant parts and the callus. However, carbonyl compounds were identified in all the plant parts except the stems, and phlobatanins were detected in all parts except the roots. In the callus, both carbonyl compounds and phlobatanins were also detected.

Table 2 shows the results of the preliminary screening tests of the phytochemicals in the n-hexane extracts, which indi-

cated the presence of cardiac glycosides and steroids in all the plant parts and the callus. Terpenoids were also recorded in the callus and all the plant parts except the flowers. Carbonyl compounds were detected in the callus, roots, and flowers. Saponins and reducing sugars were detected only in the roots, and flavonoids were identified only in the leaves and flowers. Phenols/tannins were absent in all the plant parts except the stems. Contrariwise, alkaloids and phlobatanins were not found either in the plant parts or in the callus.

4. DISCUSSION

In the present study, ethanol extracts of *P. jaubertii* showed the presence of various phytochemical constituents like alkaloids, flavonoids, saponins, reducing sugars, glycosides, terpenoids, phlobatanins, carbonyls, phenols/tannins, and steroids in almost all the plant parts and the callus (Table 1). On the other hand, n-hexane extracts showed the presence of most of these phytochemicals, but some of these constituents were absent in some of the plant parts and the callus (Table 2). Unlike ethanol, n-hexane is known as a nonpolar solvent, and

most of the polar compounds are not dissolved in it. However, the presence of these phytochemical groups in the extracts was in agreement with other studies that have reported the presence of many of these compounds in the EO extracted by hydrodistillation of the areal parts of this plant [5–8]. These results were also observed in various extracts of other species of *Pulicaria*, such as *P. incise*[8–11, 34]; *P. crispa* [13, 16]; *P. undulata* [13–15]; and *P. mauritanica* [16]. Other genera belonging to the same family, Asteraceae, were also reported to contain many of these phytoconstituents, in which leaves and stems of *Anvillea Radiata*, *Cotula cinerea*, and *Matricaria pubescens* were found to contain the saponins, terpenoids, alkaloids, tannins, flavonoids, and steroids [36]. Equally, the phytochemical screening of *Asteriscus graveolens* (family: Asteraceae) revealed the presence of alkaloids, coumarins, condensed tannins, terpenes, and cyanogenic compounds [37].

Furthermore, the ethanol extract of the callus showed the presence of all the investigated phytochemical groups in this study. Nevertheless, to our knowledge, studied involving *in vitro* propagation of *P. jaubertii*, and the identification of bioactive substances in the callus has not yet been performed. Likewise, not many studies were conducted to identify the phytoconstituents in the callus of the plants belonging to the *Pulicaria* genus and Asteraceae family. The only recognized published study on other *Pulicaria* species was carried out by Rouane *et al.* [38], who reported that mucilage, saponins, flavonoids, and anthocyanins were detected in the callus of *P. incise*. Nonetheless, many of these phytochemicals revealed in the callus in this study were also detected in the callus of other various plant species belonging to other families, such as *Solanum nigrum* (family: Solanaceae) [39]; *Corynandra felina* (family: Cleomaceae) [40]; *Passiflora caerulea* (family: Passifloraceae) [41]; and *Mussaenda glabrata* (family: Rubiaceae) [42].

Interestingly, *P. jaubertii* extract was reported to have potent antimicrobial, antioxidant, and anti-inflammatory properties [4, 7, 43] and various other therapeutic activities [3]. These pharmacological effects may be associated with the presence of these phytochemicals in this plant. It is known that various groups of the plant's secondary metabolites such as flavonoids, alkaloids, phenols, glycosides, terpenoids, and volatile oils, are used as protective and immune-supportive agents against infectious pathogens [44]. In this study, flavonoids were found in all the plant parts and the callus. Flavonoids have been reported to exhibit anti-microbial, anti-allergic, anti-inflammatory, anti-oxidative, and anti-cancer activities, as well as a protective anti-ulcer property on the mucosa [45–48]. Alkaloids were also detected in all the plant parts and the callus. Alkaloids are have been reported to act as chemopreventive phytochemicals to suppress cancer growth and tumor development [49]. Similarly, reducing sugars were detected in every part

of the plant as well as in the callus. The presence of carbohydrates in the plant could provide the energy required to enhance immune system activities [50]. Terpenoids, saponins, phenols/tannins, phlobatanins, glycosides, and steroids were also shown to be present in most of the plant parts and in the callus. As suggested [1, 51], terpenoids extracted from some *Pulicaria* species have antimicrobial actions. Terpenoids also have anti-tumor, anticancer, anti-inflammatory, anti-malarial, analgesic, and anti-cardiovascular disease properties [52]. They showed the ability to relax cardiovascular smooth muscle by several mechanisms [53]. Furthermore, phenols were found to reduce blood cholesterol levels and protect against coronary heart disease and some types of cancer [54]. Tannins were claimed to have cytotoxic and anti-tumor activities [46], and they could be used in the treatment of ulcerations, inflammation, and intestinal disorders including diarrhea and dysentery [55]. Similarly, as mentioned by Olivia *et al.* [56], saponins and tannins may reduce the inflammation, protect the gastric mucosa, and reduce its acidity. This protective action against peptic ulcer could also be exerted by terpenoids and alkaloids [57, 58]. Phlobatannins were reported to have wound healing, anti-inflammatory, analgesic, and antioxidant properties [59]. Cardiac glycosides are known to be medically used as a cardiotonic and to treat renal and infectious diseases [54]. Cardiac glycosides were also found to have sedatives and antispasmodic properties [60]. Plant steroids were reported to have immunosuppressive, hepatoprotective, cytotoxic, anti-tumor, plant growth hormone regulator, sex hormone, cardiotonic antibacterial, and antihelminthic activities [61].

From this perspective, the presence of these phytochemical classes in both plant parts and callus highlights the importance of conducting further studies involving other solvents and more sophisticated separation techniques to accurately characterize their bioactive constituents and to discover and develop new therapeutic drugs from this plant.

5. CONCLUSION

In this study, which involves the screening of phytochemical classes in the ethanol and n-hexane extracts of the plant parts and the callus of *P. jaubertii*, several phytochemical classes were detected in both extracts, particularly the ethanol extracts for which the therapeutic properties of many of these phytochemical groups are well known. Nevertheless, the identification of the phytocompounds in the species belonging to these groups and their therapeutic activities has yet to be fully elicited. Further phytochemical and pharmacological studies, including developed separation techniques and various solvents, are recommended.

Acknowledgements

The authors express their gratitude to the Biology

Department, Faculty of Science, Ibb University, and to the Department of Pharmacy, Faculty of Medical Sciences, University of Sciences and Technology, Ibb branch, Yemen, for providing laboratories and equipment necessary to conduct this research. They also express their thankfulness to Dr. Mohammed Alsamei, Dr. Hassan M. Ibrahim, Mr. Mohammed Alnabhan, and Mr. Mokhtar Algabalbin for their helpful support and assistance.

REFERENCES

[1] G. Fawzy, H. A. Ati, and A. E. Gamal, "Chemical composition and biological evaluation of essential oils of *pulicaria jaubertii*," *Pharmacogn. Mag.* **9**, 28–32 (2013).

[2] A. Dubaie and A. El-Khulaidi, *Medicinal and aromatic plants in Yemen: deployment-components of effective-uses* (Ebadi Center for Studies and Publishing, Sana'a, Yemen, 2005).

[3] M. Algabr, S. Ameddah, A. Menad, et al., "Essential oil composition of *pulicaria jaubertii* from yemen," *Int. J. Med. Aromat. Plants* **2**, 688–690 (2012).

[4] Q. Al-Maqtari, A. Mahdi, W. Al-Ansi, et al., "Evaluation of bioactive compounds and antibacterial activity of *pulicaria jaubertii* extract obtained by supercritical and conventional methods," *J. Food Meas. Charact.* **15**, 449–456 (2021).

[5] E. Ragab and M. Raafat, "A new monoterpane glucoside and complete assignments of dihydroflavonols of *pulicaria jaubertii*: Potential cytotoxic and blood pressure lowering activity," *Nat. Prod. Res.* **30**, 1280–1288 (2016).

[6] E.-S. El-Ghaly, U. Shaheen, E. Ragab, et al., "Bioactive constituents of *pulicaria jaubertii*: A promising antihypertensive activity," *Pharmacogn. J.* **8**, 81–86 (2016).

[7] K. Hussein, A. Ahmed, and M. Al-Maqtari, "Composition and radical scavenging activity of edible wild *pulicaria jaubertii* (asteraceae) volatile oil," *PSM Biol. Res.* **2**, 21–29 (2017).

[8] S. Alsaedi and G. Aljeddani, "Phytochemical analysis and bioactivity screening of primary and secondary metabolic products of medicinal plants in the valleys of medina region saudi arabia," *Adv. Biol. Chem.* **12**, 92–115 (2022).

[9] R. Bakr, E. Shahat, A. Elissawy, et al., "Evaluation of the hepatoprotective activity of *pulicaria incisa* subspecies *candolleana* and in silico screening of its isolated phenolics," *J. Ethnopharmacol.* **271**, 113767 (2021).

[10] O. El-Shahaby, M. El-Zayat, R. Rabei, and H. Aldesuquy, "Phytochemical constituents, antioxidant activity and antimicrobial potential of *pulicaria incisa* (lam.) dc as a folk medicinal plant," *Prog. Chem. Biochem. Res.* **2**, 222–227 (2019).

[11] E. Ewais, M. El-Maboud, and M. Haggag, "Studies on chemical constituents and biological activity of *pulicaria incisa* subsp. *incisa* (asteraceae)," *Rep. Opin.* **6**, 27–33 (2014).

[12] Y. Elshiekh and M. Abdelmoniem, "Phytochemical, antibacterial screening and antioxidant activity of *pulicaria crispa* extracts," *Pharma Innov. J.* **3**, 12–15 (2015).

[13] M. Emam, H. Khattab, and M. Hegazy, "Assessment of anticancer activity of *pulicaria undulata* on hepatocellular carcinoma hepg2 cell line," *Tumor Biol.* **41**, 1010428319880080 (2019).

[14] N. Helal, N. Ibrahim, and H. Khattab, "Phytochemical analysis and antifungal bioactivity of *pulicaria undulata* (l.) methanolic extract and essential oil," *Egypt. J. Bot.* **59**, 827–844 (2019).

[15] E. Mohamed, A. Muddathir, and M. Osman, "Antimicrobial activity, phytochemical screening of crude extracts, and essential oils constituents of two *pulicaria* spp. growing in sudan," *Sci. Reports* **10**, 17148 (2020).

[16] B. Senhaji, B. Chebli, E. Mayad, et al., "Phytochemical screening, quantitative analysis and antioxidant activity of *asteriscus imbricatus* and *pulicaria mauritanica* organic extracts," *Int. Food Res. J.* **24**, 2482–2489 (2017).

[17] M. Hussain, S. Fareed, S. Ansari, et al., "Current approaches toward production of secondary plant metabolites," *J. Pharm.* **4**, 10–20 (2012).

[18] W. Yue, Q.-L. Ming, B. Lin, et al., "Medicinal plant cell suspension cultures: pharmaceutical applications and high-yielding strategies for the desired secondary metabolites," *Crit. Rev. Biotechnol.* **36**, 215–232 (2016).

[19] J. Cardoso, M. Oliveira, and F. Cardoso, "Advances and challenges on the in vitro production of secondary metabolites from medicinal plants," *Hortic. Brasileira* **37**, 124–132 (2019).

[20] E. Ghazal, "Floristic study on the vegetation of hajjah government, west of yemen," *J. Med. Plants Stud.* **7**, 12–17 (2019).

[21] G. Delgado-Paredes, C. Vásquez-Díaz, B. Esquerre-Ibañez, et al., "In vitro tissue culture in plants propagation and germplasm conservation of economically important species in perú," *Sci. Agropecuaria* **12**, 337–349 (2021).

[22] B. Gulzar, A. Mujib, M. Malik, et al., "Plant tissue culture: agriculture and industrial applications," in *Transgenic Technology Based Value Addition in Plant Biotechnology*, (Elsevier, 2020), pp. 25–49.

[23] E. Benjamin, G. Ishaku, F. Peingurta, and A. Afolabi, "Callus culture for the production of therapeutic compounds," *Am. J. Plant Biol.* **4**, 76–84 (2019).

[24] C. Espinosa-Leal, C. Puent-Garza, and S. García-Lara, "In vitro plant tissue culture: means for production of biological active compounds," *Planta* **248**, 1–18 (2018).

[25] R. Grabkowska, W. Mielicki, M. Wielanek, and H. Wysokinska, "Changes of phenylethanoid and iridoid glycoside distribution in various tissues of shoot cultures and regenerated plants of *harpagophytum procumbens* (burch.) dc. ex meisn," *South Afr. J. Bot.* **95**, 159–164 (2014).

[26] M. Debnath, C. Malik, and P. Bisen, "Micropropagation: a tool for the production of high quality plant-based medicines," *Curr. Pharm. Biotechnol.* **7**, 33–49 (2006).

[27] T. Murashige and F. Skoog, "A revised medium for rapid growth and bio assays with tobacco tissue cultures," *Physiol. Plantarum* **15**, 473–497 (1962).

[28] F. Salam, F. Alhadi, and M. Al-Thobhani, "Effect of full and half ms-salt strength on some commercial cultivars of carnation (*dianthus caryophyllus* l)," *PSM Biol. Res.* **6**, 5–12 (2021).

[29] D. Venkatesan et al., "Studies on phytochemical constituents, functional group identification and antimicrobial activity of *solanum nigrum* (solanaceae)," *Ethnobot. Leafl.* **2009**, 7 (2009).

[30] A. Adetuyi and A. Popoola, "Extraction and dyes ability potential studies of the colourant in *zanthoxylum zanthoxyloides* plant on cotton fabric," *J. Sci. Eng. Technol.* **8**, 3291–3299 (2001).

[31] G. Trease and W. Evans, *Pharmacognosy* (Brailiar Tiridel and Macmillian Publishers, London, UK, 1989), 11th ed.

[32] A. Sofowora, *Medicinal Plants and Traditional Medicine in West Africa* (John Wiley and Sons, New York, 1982).

[33] J. Harborne, *Phytochemical Methods* (Chapman and Hall, Ltd, London, 1973).

[34] A. Sofowora, *Medicinal Plants and Traditional Medicine in Africa* (Spectrum Books Ltd, Ibadan, Nigeria, 1993).

[35] N. A. Almasehali, H. M. Ibrahim, F. A. Alarbagi, et al., "Phytochemical screening and biological activity (antioxidant and antibacterial) of *punica granatum* fruit peel extract cultivated in sa'dah governorate-yemen," *Sana'a Univ. J. Appl. Sci. Technol.* **2**, 333–338 (2024).

[36] M. Djellouli, A. Moussaoui, H. Benmehdi, et al., "Ethnopharmacological study and phytochemical screening of three plants (asteraceae family) from the region of south west algeria," *Asian J. Nat. Appl. Sci.* **2**, 59–65 (2013).

[37] H. Alilou, B. Bencharki, L. Hassani, and N. Barka, "Phytochemical screening and spectroscopic identification of flavonoids of *asteriscus graveolens* subsp. *odoros*," *Afrique Sci. Revue Int. des Sci. et Technol.* **10**, 316–328 (2014).

[38] A. Rouane, D. Chabane, and K. Arab, "Evaluation of acute toxicity and anti-inflammatory activity of callus extracts of *pulicaria incisa* (lam.) dc," *Appl. Ecol. & Environ. Res.* **17**, 1013–1025 (2019).

[39] E. Ewais, S. Desouky, and E. Eshazly, "Studies on callus induction, phytochemical constituents and antimicrobial activity of *solanum nigrum* l. (solanaceae)," *Nat. Sci.* **3**, 133–138 (2015).

[40] M. Narendar, K. Thirupathi, P. Sreenu, *et al.*, "Screening of preliminary phytochemicals and in vitro antibacterial activity of methanolic extracts of stem, leaf, root and leaf callus of *corynandra felina* (l.f.) cochrane iltis," *Adv. Zoöl. Bot.* **11**, 367–374 (2023).

[41] H. Prithviraj, H. Nk, G. Basavaraj, *et al.*, "Preliminary phytochemical analysis and antibacterial activity of leaf and leaf derived callus extracts of *passiflora caerulea*: An important medicinal plant," *World J. Adv. Res. Rev.* **17**, 203–209 (2023).

[42] D. Manasa, K. Chandrashekhar, and N. Bhagya, "Rapid in vitro callogenesis and phytochemical screening of leaf, stem and leaf callus of *mussaenda frondosa* linn.: A medicinal plant," *Asian J. Pharm. Clin. Res.* **10**, 81–86 (2017).

[43] H. Mohammed, M. Abdelwahab, E.-S. El-Ghaly, and E. Ragab, "Phytochemical characterization, in vitro anti-inflammatory, anti-diabetic, and cytotoxic activities of the edible aromatic plant; *pulicaria jaubertii*," *Molecules* **26**, 203 (2021).

[44] H. Ibrahim, Q. Abdullah, A. Humaid, *et al.*, "Phytochemical screening and anti-microbial activities of *aloe fleurentinorum* lavranos & newton," *J. Chem. Biol. Phys. Sci.* **12**, 335–348 (2022).

[45] D. Ravishankar, A. Rajora, F. Greco, and H. Osborn, "Flavonoids as prospective compounds for anti-cancer therapy," *The Int. J. Biochem. & Cell Biol.* **45**, 2821–2831 (2013).

[46] N. Joshi, S. Bhatt, S. Dhyan, and J. Nain, "Phytochemical screening of secondary metabolites of *argemone mexicana* linn. flowers," *Int. J. Curr. Pharm. Res.* **5**, 144–147 (2013).

[47] M. Abebaw, B. Mishra, and D. Gelayee, "Evaluation of anti-ulcer activity of the leaf extract of *osyris quadripartita* decne. (santalaceae) in rats," *J. Exp. Pharmacol.* **9**, 1–11 (2017).

[48] J. Stoclet and V. Schini-Kerth, "Dietary flavonoids and human health," *Ann. Pharmacother.* **69**, 78–90 (2011).

[49] D. Koomson, B. Kwakye, W. Darkwah, *et al.*, "Phytochemical constituents, total saponins, alkaloids, flavonoids and vitamin c contents of ethanol extracts of five *solanum torvum* fruits," *Pharmacogn. J.* **10**, 946–950 (2018).

[50] R. Ehness, M. Ecker, D. Godt, and T. Roitsch, "Glucose and stress independently regulate source and sink metabolism and defense mechanisms via signal transduction pathways involving protein phosphorylation," *The Plant Cell* **9**, 1825–1841 (1997).

[51] M. Al-Fatimi, N. Awadh, M. Wurster, *et al.*, "Chemical composition, antimicrobial and antioxidant activity of the essential oil of *pulicaria jaubertii* from south yemen," *World J. Pharm. Res.* **4**, 1–9 (2015).

[52] J. Câmara, R. Perestrelo, R. Ferreira, *et al.*, "Plant-derived terpenoids: A plethora of bioactive compounds with several health functions and industrial applications—a comprehensive overview," *Molecules* **29**, 3861 (2024).

[53] J. Alves-Silva, M. Zuzarte, C. Marques, *et al.*, "Protective effects of terpenes on the cardiovascular system: current advances and future perspectives," *Curr. Med. Chem.* **23**, 1–42 (2016).

[54] S. Gawri and A. Upadhyay, "A comparative study on the antimicrobial activity and the presence of phytochemicals in the petioles and callus of *j. curcas*," *J. Phytol.* **4**, 18–20 (2012).

[55] S. Dharmananda, "Gallnuts and the uses of tannins in chinese medicine," (2003). <http://www.itmonline.org/arts/gallnuts.html>.

[56] N. Olivia, U. Goodness, and O. Obinna, "Phytochemical profiling and gc-ms analysis of aqueous methanol fraction of *hibiscus asper* leaves," *Future J. Pharm. Sci.* **7**, 1–5 (2021).

[57] A. Rouibi and S. Boukrita, "Phytochemical characterization, anti-inflammatory and anti-ulcer activity of a spontaneous succulent *delosperma reseii*," *Univers. J. Agric. Res.* **6**, 113–117 (2018).

[58] P. Sreeja, K. Arunachalam, S. Saikumar, *et al.*, "Gastroprotective effect and mode of action of methanol extract of *sphenodesme involucrata* var. *paniculata* (cb clarke) munir (lamiaceae) leaves on experimental gastric ulcer models," *Biomed. & Pharmacother.* **97**, 1109–1118 (2018).

[59] B. Longbap, O. Ushie, E. Ogah, *et al.*, "Phytochemical screening and quantitative determination of phytochemicals in leaf extracts of *hannoia undulata*," *Int. J. Med. Plants Nat. Prod.* **4**, 32–38 (2018).

[60] A. Egunnyomi, J. Moody, and O. Eletu, "Antisickling activities of two ethnomedicinal plant recipes used for the management of sickle cell anaemia in ibadan, nigeria," *Afr. J. Biotechnol.* **8**, 20–25 (2009).

[61] K. Saha, R. Proma, and N. Khan, "Phytochemical screening of plant extracts and gc-ms analysis of n-hexane extract of the leaves of *cassia alata* linn," *The J. Phytopharm.* **9**, 342–347 (2020).