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ABSTRACT

The Burke-Shaw model (BSM), which is grounded in the Lorenz system, is essential in various areas of physics
and engineering. In this paper, we investigate the application of a fractional derivative with a Mittag-Leffler (M-L)
type kernel to address the existence, uniqueness, and Hyers-Ulam stability (HUS) of solutions for the fractional-
order BSM. We utilize the ABC-fractional derivative, developed by Atangana and Baleanu, as it offers a more
adaptable approach suitable for a diverse array of real-world applications. To demonstrate the existence and
uniqueness of solutions, as well as HUS, we introduce a set of necessary conditions that ensure the results
presented in this study.
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1. INTRODUCTION [1=7, 9, 10]. We interest to study the ordinary and partial

differential equations with non integer order, because

Fractional Calculus is a general subject of applied mathe-
matics which means that it is an extension of derivatives
and integrals with integer order to derivatives and in-
tegrals with any arbitrary order. Thirty years ago, the
paradigm start to shift from pure mathematics to ap-
plied mathematics, such that its applications appear in
several applied scientific fields, like: engineering, biol-
ogy, physics, chemistry, viscoelasticity, fluid dynamics,
computer science, signal processing, image processing,

mechatronics, electrochemistry, etc. For example, see

most of models in applied fields in nowadays involve
fractional order derivatives and fractional order integrals
in their terms and conditions. To learn more informa-
tion, we refer to see[11-15, 19]. Therefore, large number
of researchers studied several aspects of the arbitrary
order differential equations. Mathematical tools are ex-
tremely useful in modeling of several real processes and
phenomena studied in optimal control, mechanics, bi-

ology, medicine, biotechnology, economics, electronics,
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etc. More information about applications in [16—18]. So,
first of all, we will present some important contributions
of scientists in mathematical models with fractional order
derivatives. The authors in [20] used Caputo-Fabrizio
derivative to describe a model of the dynamic of hepatitis
B virus. Carla M.A. et al.[21] analyzed the impact of pre-
exposure prophylaxis (PrEP) and screening effects on
HIV dynamics in infected patients. Ivo P.[22] described
numerical and simulation models for the classical and
fractional-order Bloch equations. Khaled M.S.[23] ap-
plied Caputo, Caputo-Fabrizio and Atangana-Baleanu
in the Liouville-Caputo sense derivatives with a cubic
isothermal auto-catalytic chemical model to obtain ap-
proximate solutions of this model. Saif U. et al.[26] inves-
tigated the existence and uniqueness of solution using
fixed point Theorem with Atangana-Baleanu derivative
for hepatitis B virus model. By using fixed point Theorem,
Badr S. TA. et al. [27] studied the existence, uniqueness
and stability of solution for HIN1 spread model with Atan-
gana—Baleanu fractional derivative. More examples in
[24, 25, 28—-31]. Recently, Gamal M. et al. [33] applied
Pyragas method to control the chaotic behavior of the

follonimg fractional Burke-Shaw system

“Diu(t) = —B(u(t)+o(t),
“Div(t) = —(o(t)+ Bult)w(t)),
C'Dg’lw(t) = a+ﬁv(t)u(t),

where u,v,w € R and &, B > 0. “D* is Caputo derivative
with order 0 < pu < 1.

The study of fractional-order systems in the context
of the ABC-fractional derivative has gained significant
attention in recent years, particularly due to their ability to
more accurately describe real-world systems exhibiting
memory and hereditary properties. However, despite
the growing interest in ABC-fractional-order derivatives,
their application to models such as the BSM remains rel-
atively unexplored. For instance, a notable contribution
in the literature is the introduction of a fractal-fractional
order for the BSM using the Caputo-Fabrizio derivative
with an exponential decay kernel [34]. The study demon-
strates the existence and uniqueness of the model using
fixed-point theory and solves it numerically with a power

series method. A novel numerical scheme based on

Newton’s interpolation polynomial is used to efficiently
solve the fractional BSM, highlighting the advantages
of fractal-fractional derivatives in capturing complex dy-
namics in chaotic systems. The authors in [35] com-
pared synchronization times of the BSM using active
control and integer- and fractional-order Pecaro-Carroll
(P-C) methods. They showed that the optimal fractional-
order P-C method synchronizes 2.35 times faster than
active control, with an optimal value of 0.1. This faster
synchronization reduces communication delays, making
the method ideal for secure communication applications,
where signals are transferred with minimal delay and

near-zero error rates.

While existing literature has examined the BSM using
both integer-order and other fractional-order derivatives,
there is a notable gap in comprehensive studies that in-
tegrate fractional-order derivatives specifically within the
framework of the ABC-fractional derivative. Therefore,
motivated by the above discussion, the proposed model

is formulated as follows:
ABCoD u(t) = —B(u(t) +o(t)),
ABC DI (t) = — (yo(t) + Bu(t)w(t)), 1)
ABC DSw(t) = a + Bo(t)u(t),

up(t) =0, vo(t) =0, wp(t) =0.

where u,v,w € R and &P > 0.
ABC DI ABC ;D¢, ABC D¢ are Atangana and Baleanu
derivatives in Caputo sense with orders 0 < y,6,¢ < 1.

In our knowledge, no one yet has considered the
fractional version of BSM with ABC derivative. So, our

proposed model is more general and complicated.

This paper aims to fill the mentioned gap by investi-
gating the existence and uniqueness of solutions (EUS),
as well as HUS, for the proposed ABC-fractional version
of the BSM (1.1). The model considered here involves
differential equations with the ABC fractional derivative,
which offers a more general and flexible framework for
modeling complex physical phenomena. By applying
fractional-order calculus to the BSM, we extend the clas-
sical Lorenz system into the fractional domain, providing
new insights into the stability and behavior of such sys-

tems.

Below, we present some key definitions, lemmas, and
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theorems that will be essential for our study.

Definition 1.1. [36] Fractional ABC derivative in Caputo
sense of the function ¢ € H*(a,b),b > a,u € [0,1] is
given by

e, ptp(r) = 20 [y )  H
(1.2)
where B(p) is satisfied the property B(0) = B(1) = 1.
Definition 1.2. [32] Fractional ABC derivative in Riemann-
Liouville sense of the function ¢ € H*(a,b),b > a,u €
[0,1] is described as follows:

8, pty(e) = UL [T (o, (AT s
(1.3)

Definition 1.3. [37, 38] Fractional ABC integral of the
function ¢ € H*(a,b),b > 4,0 < u < 1is given by

M8 Tip(r) = gl + gt [ v e —sp s

B(u) w)T

(1.4)

Lemma 1.4. [32] The ABC fractional derivative and ABC
fractional integral of the function v are satisfied Newton-

Leibniz formula

AB ZH(APC, Dy (1)) = 9(1) —p(a).  (1.5)

Theorem 1.1. [32] For two functions v, ¢, the ABC frac-
tional derivative and ABR fractional derivative hold the

Lipschitz condition

I4€aDEp(7) =45 aDEp(T)|| < Allp(7) = p(T)]l, (1.6)
145 Dry (1) ~APRDEp (D) < Allp(r) = ¢(0)].(1.7)

The primary contribution of this study is the applica-
tion of fractional-order derivatives, particularly the ABC-
fractional derivative, to the BSM. This novel approach
presents a new framework for analyzing the stability
and dynamics of systems in physics and engineering,
offering a more accurate representation of real-world
processes. Organization of the paper: The paper is
organized into four sections. Section 1 provides a liter-
ature review on the BSM, the ABC-fractional derivative,
the ABC-fractional integral, and recent developments in
fractional calculus, particularly in relation to physical ap-
plications. In Section 2, we establish the existence and
uniqueness of solutions for the fractional-order BSM us-

ing the ABC-fractional derivative. Section 3 is dedicated

to demonstrating the HUS. Finally, Section 4 summarizes
the key findings of the paper and offers suggestions for

future research on the system.

2. EXISTENCE AND UNIQUENESS OF
SOLUTION

There is no specific method that provides an exact so-
lution to our system Eq. (1.1). However, under certain
conditions, the existence and uniqueness of an exact
solution can be ensured. In this section, we investigate
the existence and uniqueness of solutions for Eq. (1.1).

By applying the ABC-fractional integral operator to
both sides of each equation in Eq. (1.1), the system can
be transformed into a Volterra-type integral equation, as

shown below:

For simplicity, we define F;,i € ]N% as follows:

Fi(tu) = —p(u(t)+o(t)),
B(to) = —(yo(t) + Bu(t)w(t)),
E(tw) = a+po(tu(t).

Theorem 2.1. The kernels F;, F, and F; hold the Lips-
chitz condition and contractions, If the subsequent re-

spective conditions 0 < ¢; <1, j € IN? are satisfied.

Proof. First, we assume that uq,u; are functions and
a1, a4, are non-negative real numbers, such that ||uq]| <

aq, ||uz|] < ay, then we have

|Fi(t,u1) — Fi(t,u)|| =

I = Bur(t) — ua(t)) |
Bllur () —ua(t)[|.  (2.2)

IA

Taking ¢1 = B, we obtain

[Fi(t ur) — Fi(t,un)|| < lyflug(t) —ua(t)l].  (2.3)
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From Eq. (2.3), we find that the kernel F; is satisfying
the Lipschitz condition, moreover if 0 < ¢; < 1, then the
kernel F; is contraction.

Second, we assume that vy, v, are functions and by, b,
are non-negative real numbers, such that |v1]] <

by, ||v2|| < by, then we have

—REtvn)| =

| = (v1(t) —v2(t))
Yloi(t) —v2(t)].  (2.4)

IE2(t,v1)

IA

Taking ¢, = v, we get

[F2(t,01) — Ba(t, 02)|| < laflor(t) —o2(B)[.  (2.5)

From Eq. (2.5), we observe that the kernel F, satisfies
the Lipschitz condition. Furthermore, if 0 < ¢, < 1, the
kernel F, becomes a contraction.

Finally, we assume that w, w, are functions and ¢y, c»
are non-negative real numbers, such that |Jw;]|

c1, ||Jwa|| < ca, then we have

|F3(t, wy) — F3(t, wa)|| = 0 < £3]|wy (t) —wa(t)]]. (2.6)

From Eq. (2.6), we find that the kernel F; is satisfying
the Lipschitz condition, moreover if 0 < ¢3 < 1, then the

kernel F3 is contraction. O

By using the above kernels, one can rewrite the sys-

tem Eq. (2.1) in the following simple form:

u(t) = 1( ) Fi(t,u)+
t
B(uftrw) /0 (t =)' R (s, u(s))ds,
v(t) = 1(;5 2(t,0)+
J (2.7)
B(O)T () /0 (t=5)"" Fa(s, 0(s))ds,
1—¢
w(t) = Wﬁ(t,w)-}-
m/o (F =) Es(s,w(s))ds.

Now, we construct the subsequent recursive formula as

follows:
_ 1w

tn(t) B(u) Fi(tup—1)+

BTG ¢ B )i
1—

vn(t) = B(0) E(t,v,_1)+ o8
5T 9 R o),

wn(t) = %Fg,(t, Wy_1)+

€

B(e)T(e) /ot(t =) (s, w1 (5))ds.

Let us define a new expressions for the difference be-

tween the successive term as follows:

uDn(t) = un(t) —up—1(t) = T(Pl(t SUp-1)
_pl(t,un,z))jLW/ (t— )" (Ey (s, 1)
— Fi(s, uy—2(s)))ds,

1-96

‘U@Vl(t) = Un(t) - z)n—l(t) =

0 t _
B(3)I(9) /o (t=s)""
— By (s,vp-2(5)))ds,

wDn(t) = wn(t)

—Fk(t, Un72)) +

—w,_1(t) =
— Bt wy—2)) + -

— F3(s, wy_2(s)))ds.

It is interesting to note that

n

un(t) = ) uDi(t),
i=0
n

ou(t) =Y 0Di(t), (2.10)
i=0
n

wy(t) = Zw'@z(t>
i=0

Taking the norm for both sides of Eq. (2.9)

[uDn(t)]| < T;”Fl(t un—1) — Fi(t,up—)||
+B( )1“(;4) ( s)H lHFl (s,up—1)
*H(s ty—(5)) llds < Feb g1 () = o (8)]]

B (1 Jo (t =)' 1IIMn 1(8) — tn—2(s)]|ds.
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This implies

D (t)]] < (ﬁanﬁnunw

4 B
BGOT(0 ! /0 (t =) H[uDy_1(s) | ds.

Similarly, we get the following results:

2.11)

lo®a()]] < =2 2D (B)]+

( )

1)
BT )gz/ (t=
oD ()] < =l Dn1 (1) |+

$)° HoDu-1(s)|lds,
(2.12)

50
BT ¢ oD

By using recursive method with Eq. (2.11) and
Eqg.Eq. (2.12), we get

) 1

[@a(®)]] < Il (0)] [(;(—IK
(0= fren (O] [(%(_5;5) " B(é)lr(é‘)}"

w®u()] < [en@ [ +

Theorem 2.2. The ABC fractional system Eq. (1.1) has

a system of solutions if the following restrictions are hold:

(1—p) 1
5y * Bt

/<1,

(2.14)

Proof. From Eq. (2.7) and Eq. (2.8), we assume

u(t) = un(t),
o(t) = oalt),
w(t) = wa(t).

Let us define A,, B,,C,, as follows

An(B) = u(t) — un(t),
Bu(t) = o(t) —valt),
Calt) = w(t) —wa(t).

Now, we show that |4, (¢)|| — 0,

1Bu(t)|] =0, ||Cu(t)]| — 0asn — co.

\MAMPW%@%&@@

% /ot(t =)' (Fi(s,u) — Fi(s,un-1(5)))ds|

— Fl(t,unfl))+

< S IR0 — At + g s
/0 (t = )" Y[Fi(s,u) — Fy(s, un—1(s)) | ds
1-— 1
< B(]/l) élHu(t) Up—1 H + B(y)l"(y) X
Ju(t) = un—1 (£)]
(2.15)
This implies
1—pu 1 u(P —u
14O < (05 + Brrge) aln® = w0
(2.16)
With help of Eq. (2.13), we obtain
1—p 1 n+1 41
A T E

From Eq.(2.17), we see that ||.A,(t)|| = 0 as n — co.
By following the same approach and previous steps, we
find that ||B,(t)|| — 0,||Cu(t)|| — 0 as n — oo which

complete the proof. O

Theorem 2.3. The system Eq. (1.1) has a unique system

of solutions if the following conditions are hold :

(I—p) 1 B

sy T BTGy < O
1-6) 1

(B((S) + ((5)1"())22_1 < 0,
(178) 1

5@ TBore/e Tt < °

Proof. We suppose that there is another system of
solutions u*(t),v*(t), w*(t) for the system Eq. (1.1) ,

then we have

* 1 —H
[[u(t) —u*(B)]| < Wllﬂ(f,u)

/ot 1F1(s, 1) = Fu(s,u®)[[(t = )" ds

— Rt u)|+

I
B(u)I'(n)

1—u
< B() Cfu(t) —

mam+§@%@¢mmw—mum
(2.18)

Making use of Eq. (2.18), we get

[Ju(t) —

wOI(G2 + 50

B BV 20

(2.19)
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Eqg.Eq. (2.19) is valid if and only if

[Ju(t) —u* (B)[| = 0.

This implies
u(t) = u*(t).

Repeating the same procedure with v(¢t) and w(t), we

obtain

o(t) = o*(t), w(t) = w*(t).
This proves that the system Eq. (1.1) has a unique sys-

tem of solutions. O

3. HYERS-ULAM STABILITY

Definition 3.1. The integral equations Eq. (2.7) is Hyers-
Ulam stable if there exists non-negative constants A;,i €
IN$ satisfying:

For every a; > 0,i € IN3, if

0) = g B~ g

[ 6= u()s] < o,

1—-96 )
P = 55 20~ 55r0)

1—c¢ €
B ) T B
[ =9 B w(e)is] < s

there exist u*(t), v*(t),

|w(t) —

w*(t) are satisfying

) = TR ko
)=+ 50 1) T B

such that
[Ju(t) —
[o(t) —
jw(t) —

Theorem 3.2. The ABC fractional version of Burke-Shaw

ur ()] < wdy,
”U*(t)H < arA, and (33)

w*(t) || S DL3A3.

system Eq. (1.1) is Hyers-Ulam stable.

Proof. Using Definition 3.1 and Eq.Eq. (2.
w(t)) to be the fact solution of Eqg. (2.7)

(t),v*(t),w*(t)) to be an approximate solution

(u(t), o(t),
and (u*

7), we let

satisfying Eq. (3.3). Then, we have

[[u(t) —u™(B)[] < ( )

st ) (s

V
S ) OfJu(t) —

_ -y 1
= (5w " BT

Similarly, we get

—5

SO

. 1
O BT

Ca[lu(t)

Fy(t,ut)|

— (s, u®)||(t —s)* Yds

Cllu(t) —u

—ur (1.

1

[o(t) —o*
lw(t) —w”

O (G +
O (G

T B

)eallo(t) — o (1)],
(51)r( ) (3.5)

la]|w(t) —w™ ()]

Hence, by Eq. (3.4), Eq. (3.5) the integral equations
Eqg. (2.7) are Hyers-Ulam stable. Thus, the ABC frac-

tional version of BSM Eq. (1.1) is Hyers-Ulam stable. O

4. CONCLUSION

In this paper, we have established the existence, unique-
ness, and HUS for a fractional-order BSM using the
ABC-fractional derivative. To achieve these results, we
transformed the fractional-order BSM Eq. (1.1) into an
integral system by applying the properties of the ABC
fractional integral. We demonstrated that the fractional-
order BSM possesses a unique solution and also satis-
fies HUS. This work extends the classical Lorenz system,
which has wide-ranging applications in both physics and
engineering. For future research on the model Eq. (1.1),
we recommend exploring the multiplicity of solutions and
the possibility of non-solutions, utilizing mathematical
techniques such as topological degree theory and the
upper-lower solution method. Additionally, investigating
the numerical solutions of Eq. (1.1) through various nu-

merical methods could provide valuable insights.
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