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Abstract
The Burke-Shaw model (BSM), which is grounded in the Lorenz system, is essential in various areas of physics
and engineering. In this paper, we investigate the application of a fractional derivative with a Mittag-Leffler (M-L)
type kernel to address the existence, uniqueness, and Hyers-Ulam stability (HUS) of solutions for the fractional-
order BSM. We utilize the ABC-fractional derivative, developed by Atangana and Baleanu, as it offers a more
adaptable approach suitable for a diverse array of real-world applications. To demonstrate the existence and
uniqueness of solutions, as well as HUS, we introduce a set of necessary conditions that ensure the results
presented in this study.
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1. INTRODUCTION

Fractional Calculus is a general subject of applied mathe-

matics which means that it is an extension of derivatives

and integrals with integer order to derivatives and in-

tegrals with any arbitrary order. Thirty years ago, the

paradigm start to shift from pure mathematics to ap-

plied mathematics, such that its applications appear in

several applied scientific fields, like: engineering, biol-

ogy, physics, chemistry, viscoelasticity, fluid dynamics,

computer science, signal processing, image processing,

mechatronics, electrochemistry, etc. For example, see

[1–7, 9, 10]. We interest to study the ordinary and partial

differential equations with non integer order, because

most of models in applied fields in nowadays involve

fractional order derivatives and fractional order integrals

in their terms and conditions. To learn more informa-

tion, we refer to see[11–15, 19]. Therefore, large number

of researchers studied several aspects of the arbitrary

order differential equations. Mathematical tools are ex-

tremely useful in modeling of several real processes and

phenomena studied in optimal control, mechanics, bi-

ology, medicine, biotechnology, economics, electronics,
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etc. More information about applications in [16–18]. So,

first of all, we will present some important contributions

of scientists in mathematical models with fractional order

derivatives. The authors in [20] used Caputo-Fabrizio

derivative to describe a model of the dynamic of hepatitis

B virus. Carla M.A. et al.[21] analyzed the impact of pre-

exposure prophylaxis (PrEP) and screening effects on

HIV dynamics in infected patients. Ivo P.[22] described

numerical and simulation models for the classical and

fractional-order Bloch equations. Khaled M.S.[23] ap-

plied Caputo, Caputo-Fabrizio and Atangana-Baleanu

in the Liouville-Caputo sense derivatives with a cubic

isothermal auto-catalytic chemical model to obtain ap-

proximate solutions of this model. Saif U. et al.[26] inves-

tigated the existence and uniqueness of solution using

fixed point Theorem with Atangana-Baleanu derivative

for hepatitis B virus model. By using fixed point Theorem,

Badr S. TA. et al. [27] studied the existence, uniqueness

and stability of solution for H1N1 spread model with Atan-

gana–Baleanu fractional derivative. More examples in

[24, 25, 28–31]. Recently, Gamal M. et al. [33] applied

Pyragas method to control the chaotic behavior of the

follonimg fractional Burke-Shaw system

cDµ
t u(t) = −β

(
u(t) + v(t)

)
,

cDµ
t v(t) = −

(
v(t) + βu(t)w(t)

)
,

cDµ
t w(t) = α + βv(t)u(t),

where u, v, w ∈ R and α, β > 0. cDµ is Caputo derivative

with order 0 < µ ≤ 1.

The study of fractional-order systems in the context

of the ABC-fractional derivative has gained significant

attention in recent years, particularly due to their ability to

more accurately describe real-world systems exhibiting

memory and hereditary properties. However, despite

the growing interest in ABC-fractional-order derivatives,

their application to models such as the BSM remains rel-

atively unexplored. For instance, a notable contribution

in the literature is the introduction of a fractal-fractional

order for the BSM using the Caputo-Fabrizio derivative

with an exponential decay kernel [34]. The study demon-

strates the existence and uniqueness of the model using

fixed-point theory and solves it numerically with a power

series method. A novel numerical scheme based on

Newton’s interpolation polynomial is used to efficiently

solve the fractional BSM, highlighting the advantages

of fractal-fractional derivatives in capturing complex dy-

namics in chaotic systems. The authors in [35] com-

pared synchronization times of the BSM using active

control and integer- and fractional-order Pecaro-Carroll

(P-C) methods. They showed that the optimal fractional-

order P-C method synchronizes 2.35 times faster than

active control, with an optimal value of 0.1. This faster

synchronization reduces communication delays, making

the method ideal for secure communication applications,

where signals are transferred with minimal delay and

near-zero error rates.

While existing literature has examined the BSM using

both integer-order and other fractional-order derivatives,

there is a notable gap in comprehensive studies that in-

tegrate fractional-order derivatives specifically within the

framework of the ABC-fractional derivative. Therefore,

motivated by the above discussion, the proposed model

is formulated as follows:

ABC
0D

µ
t u(t) = −β

(
u(t) + v(t)

)
,

ABC
0Dδ

t v(t) = −
(
γv(t) + βu(t)w(t)

)
,

ABC
0Dε

t w(t) = α + βv(t)u(t),

u0(t) = 0, v0(t) = 0, w0(t) = 0.

(1.1)

where u, v, w ∈ R and α, β > 0.
ABC

0D
µ
t ,ABC

0Dδ
t , ABC

0Dε
t are Atangana and Baleanu

derivatives in Caputo sense with orders 0 < µ, δ, ε ≤ 1.

In our knowledge, no one yet has considered the

fractional version of BSM with ABC derivative. So, our

proposed model is more general and complicated.

This paper aims to fill the mentioned gap by investi-

gating the existence and uniqueness of solutions (EUS),

as well as HUS, for the proposed ABC-fractional version

of the BSM (1.1). The model considered here involves

differential equations with the ABC fractional derivative,

which offers a more general and flexible framework for

modeling complex physical phenomena. By applying

fractional-order calculus to the BSM, we extend the clas-

sical Lorenz system into the fractional domain, providing

new insights into the stability and behavior of such sys-

tems.

Below, we present some key definitions, lemmas, and
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theorems that will be essential for our study.

Definition 1.1. [36] Fractional ABC derivative in Caputo

sense of the function ψ ∈ H∗(a, b), b > a, µ ∈ [0, 1] is

given by

ABC
aDµ

τ ψ(τ) =
B(µ)
1 − µ

∫ τ

a
ψ

′
(s)Eµ

[−µ(τ − s)µ

1 − µ

]
ds,

(1.2)

where B(µ) is satisfied the property B(0) = B(1) = 1.

Definition 1.2. [32] Fractional ABC derivative in Riemann-

Liouville sense of the function ψ ∈ H∗(a, b), b > a, µ ∈
[0, 1] is described as follows:

ABR
aDµ

τ ψ(τ) =
B(µ)
1 − µ

d
dτ

∫ τ

a
ψ(s)Eµ

[−µ(τ − s)µ

1 − µ

]
ds.

(1.3)

Definition 1.3. [37, 38] Fractional ABC integral of the

function ψ ∈ H∗(a, b), b > a, 0 < µ < 1 is given by

AB
aIµ

τ ψ(τ) =
1 − µ

B(µ)
ψ(τ)+

µ

B(µ)Γ(µ)

∫ τ

a
ψ(s)(τ− s)µ−1ds.

(1.4)

Lemma 1.4. [32] The ABC fractional derivative and ABC

fractional integral of the function ψ are satisfied Newton-

Leibniz formula

AB
aIµ

τ

(ABC
aDµ

τ ψ(τ)
)
= ψ(τ)− ψ(a). (1.5)

Theorem 1.1. [32] For two functions ψ, ϕ, the ABC frac-

tional derivative and ABR fractional derivative hold the

Lipschitz condition

∥ABC
aDµ

τ ψ(τ)−ABC
aDµ

τ ϕ(τ)∥ ≤ Λ∥ψ(τ)− ϕ(τ)∥, (1.6)

∥ABR
aDµ

τ ψ(τ)−ABR
aDµ

τ ϕ(τ)∥ ≤ Λ∥ψ(τ)− ϕ(τ)∥. (1.7)

The primary contribution of this study is the applica-

tion of fractional-order derivatives, particularly the ABC-

fractional derivative, to the BSM. This novel approach

presents a new framework for analyzing the stability

and dynamics of systems in physics and engineering,

offering a more accurate representation of real-world

processes. Organization of the paper: The paper is

organized into four sections. Section 1 provides a liter-

ature review on the BSM, the ABC-fractional derivative,

the ABC-fractional integral, and recent developments in

fractional calculus, particularly in relation to physical ap-

plications. In Section 2, we establish the existence and

uniqueness of solutions for the fractional-order BSM us-

ing the ABC-fractional derivative. Section 3 is dedicated

to demonstrating the HUS. Finally, Section 4 summarizes

the key findings of the paper and offers suggestions for

future research on the system.

2. EXISTENCE AND UNIQUENESS OF
SOLUTION

There is no specific method that provides an exact so-

lution to our system Eq. (1.1). However, under certain

conditions, the existence and uniqueness of an exact

solution can be ensured. In this section, we investigate

the existence and uniqueness of solutions for Eq. (1.1).

By applying the ABC-fractional integral operator to

both sides of each equation in Eq. (1.1), the system can

be transformed into a Volterra-type integral equation, as

shown below:

u(t)− u(0) =
1 − µ

B(µ)
[
− β

(
u(t) + v(t)

)]
+

µ

B(µ)Γ(µ)

∫ t

0
(t − s)µ−1[− β

(
u(s) + v(s)

)]
ds,

v(t)− v(0) =
1 − δ

B(δ)
[
−

(
γv(t) + βu(t)w(t)

)]
+

δ

B(δ)Γ(δ)

∫ t

0
(t − s)δ−1[− (

γv(s) + βu(s)w(s)
)]

ds,

w(t)− w(0) =
1 − ε

B(ε)
[
α + βv(t)u(t)

]
+

ε

B(ε)Γ(ε)

∫ t

0
(t − s)ε−1[α + βv(s)u(s)

]
ds.

(2.1)

For simplicity, we define Fi, i ∈ N3
1 as follows:

F1(t, u) = −β
(
u(t) + v(t)

)
,

F2(t, v) = −
(
γv(t) + βu(t)w(t)

)
,

F3(t, w) = α + βv(t)u(t).

Theorem 2.1. The kernels F1, F2 and F3 hold the Lips-

chitz condition and contractions, If the subsequent re-

spective conditions 0 ≤ ℓj < 1, j ∈ N3
1 are satisfied.

Proof. First, we assume that u1, u2 are functions and

a1, a2 are non-negative real numbers, such that ∥u1∥ ≤
a1, ∥u2∥ ≤ a2, then we have

∥F1(t, u1)− F1(t, u2)∥ = ∥ − β
(
u1(t)− u2(t)

)
∥

≤ β∥u1(t)− u2(t)∥. (2.2)

Taking ℓ1 = β, we obtain

∥F1(t, u1)− F1(t, u2)∥ ≤ ℓ1∥u1(t)− u2(t)∥. (2.3)
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From Eq. (2.3), we find that the kernel F1 is satisfying

the Lipschitz condition, moreover if 0 ≤ ℓ1 < 1, then the

kernel F1 is contraction.

Second, we assume that v1, v2 are functions and b1, b2

are non-negative real numbers, such that ∥v1∥ ≤
b1, ∥v2∥ ≤ b2, then we have

∥F2(t, v1)− F2(t, v2)∥ = ∥ − γ
(
v1(t)− v2(t)

)
∥

≤ γ∥v1(t)− v2(t)∥. (2.4)

Taking ℓ2 = γ, we get

∥F2(t, v1)− F2(t, v2)∥ ≤ ℓ2∥v1(t)− v2(t)∥. (2.5)

From Eq. (2.5), we observe that the kernel F2 satisfies

the Lipschitz condition. Furthermore, if 0 ≤ ℓ2 < 1, the

kernel F2 becomes a contraction.

Finally, we assume that w1, w2 are functions and c1, c2

are non-negative real numbers, such that ∥w1∥ ≤
c1, ∥w2∥ ≤ c2, then we have

∥F3(t, w1)− F3(t, w2)∥ = 0 ≤ ℓ3∥w1(t)− w2(t)∥. (2.6)

From Eq. (2.6), we find that the kernel F3 is satisfying

the Lipschitz condition, moreover if 0 ≤ ℓ3 < 1, then the

kernel F3 is contraction.

By using the above kernels, one can rewrite the sys-

tem Eq. (2.1) in the following simple form:

u(t) =
1 − µ

B(µ)
F1(t, u)+

µ

B(µ)Γ(µ)

∫ t

0
(t − s)µ−1F1(s, u(s))ds,

v(t) =
1 − δ

B(δ)
F2(t, v)+

δ

B(δ)Γ(δ)

∫ t

0
(t − s)δ−1F2(s, v(s))ds,

w(t) =
1 − ε

B(ε)
F3(t, w)+

ε

B(ε)Γ(ε)

∫ t

0
(t − s)ε−1F3(s, w(s))ds.

(2.7)

Now, we construct the subsequent recursive formula as

follows:

un(t) =
1 − µ

B(µ)
F1(t, un−1)+

µ

B(µ)Γ(µ)

∫ t

0
(t − s)µ−1F1(s, un−1(s))ds,

vn(t) =
1 − δ

B(δ)
F2(t, vn−1)+

δ

B(δ)Γ(δ)

∫ t

0
(t − s)δ−1F2(s, vn−1(s))ds,

wn(t) =
1 − ε

B(ε)
F3(t, wn−1)+

ε

B(ε)Γ(ε)

∫ t

0
(t − s)ε−1F3(s, wn−1(s))ds.

(2.8)

Let us define a new expressions for the difference be-

tween the successive term as follows:

uDn(t) = un(t)− un−1(t) =
1 − µ

B(µ)
(

F1(t, un−1)

− F1(t, un−2)
)
+

µ

B(µ)Γ(µ)

∫ t

0
(t − s)µ−1(F1(s, un−1)

− F1(s, un−2(s))
)
ds,

vDn(t) = vn(t)− vn−1(t) =
1 − δ

B(δ)
(

F2(t, vn−1)

− F2(t, vn−2)
)
+

δ

B(δ)Γ(δ)

∫ t

0
(t − s)δ−1(F2(s, vn−1)

− F2(s, vn−2(s))
)
ds,

wDn(t) = wn(t)− wn−1(t) =
1 − ε

B(ε)
(

F3(t, wn−1)

− F3(t, wn−2)
)
+

ε

B(ε)Γ(ε)

∫ t

0
(t − s)ε−1(F3(s, wn−1)

− F3(s, wn−2(s))
)
ds.

(2.9)

It is interesting to note that

un(t) =
n

∑
i=0

uDi(t),

vn(t) =
n

∑
i=0

vDi(t),

wn(t) =
n

∑
i=0

wDi(t).

(2.10)

Taking the norm for both sides of Eq. (2.9)

∥uDn(t)∥ ≤ 1−µ
B(µ)∥F1(t, un−1)− F1(t, un−2)∥

+ µ
B(µ)Γ(µ)

∫ t
0 (t − s)µ−1∥F1(s, un−1)

−F1(s, un−2(s))∥ds ≤ 1−µ
B(µ) ℓ1∥un−1(t)− un−2(t)∥

+ µ
B(µ)Γ(µ) ℓ1

∫ t
0 (t − s)µ−1∥un−1(s)− un−2(s)∥ds.
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This implies

∥uDn(t)∥ ≤ 1 − µ

B(µ)
ℓ1∥uDn−1(t)∥+

µ

B(µ)Γ(µ)
ℓ1

∫ t

0
(t − s)µ−1∥uDn−1(s)∥ds.

(2.11)

Similarly, we get the following results:

∥vDn(t)∥ ≤ 1 − δ

B(δ)
ℓ2∥vDn−1(t)∥+

δ

B(δ)Γ(δ)
ℓ2

∫ t

0
(t − s)δ−1∥vDn−1(s)∥ds,

∥wDn(t)∥ ≤ 1 − ε

B(ε)
ℓ3∥wDn−1(t)∥+

ε

B(ε)Γ(ε)
ℓ3

∫ t

0
(t − s)ε−1∥wDn−1(s)∥ds.

(2.12)

By using recursive method with Eq. (2.11) and

Eq.Eq. (2.12), we get

∥uDn(t)∥ ≤ ∥un(0)∥
[ (1 − µ)

B(µ)
+

1
B(µ)Γ(µ)

]n
ℓn

1 ,

∥vDn(t)∥ ≤ ∥vn(0)∥
[ (1 − δ)

B(δ)
+

1
B(δ)Γ(δ)

]n
ℓn

2 ,

∥wDn(t)∥ ≤ ∥wn(0)∥
[ (1 − ε)

B(ε)
+

1
B(ε)Γ(ε)

]n
ℓn

3 .

(2.13)

Theorem 2.2. The ABC fractional system Eq. (1.1) has

a system of solutions if the following restrictions are hold:( (1 − µ)

B(µ)
+

1
B(µ)Γ(µ)

)
ℓ1 < 1,

( (1 − δ)

B(δ)
+

1
B(δ)Γ(δ)

)
ℓ2 < 1,

( (1 − ε)

B(ε)
+

1
B(ε)Γ(ε)

)
ℓ3 < 1.

(2.14)

Proof. From Eq. (2.7) and Eq. (2.8), we assume

u(t) = un(t),

v(t) = vn(t),

w(t) = wn(t).

Let us define An,Bn, Cn as follows

An(t) = u(t)− un(t),

Bn(t) = v(t)− vn(t),

Cn(t) = w(t)− wn(t).

Now, we show that ∥An(t)∥ → 0,

∥Bn(t)∥ → 0, ∥Cn(t)∥ → 0 as n → ∞.

∥An(t)∥ = ∥1 − µ

B(µ)
(

F1(t, u)− F1(t, un−1)
)
+

µ

B(µ)Γ(µ)

∫ t

0
(t − s)µ−1(F1(s, u)− F1(s, un−1(s))

)
ds∥

≤ 1 − µ

B(µ)
∥F1(t, u)− F1(t, un−1)∥+

µ

B(µ)Γ(µ)

×
∫ t

0
(t − s)µ−1∥F1(s, u)− F1(s, un−1(s))∥ds

≤ 1 − µ

B(µ)
ℓ1∥u(t)− un−1(t)∥+

1
B(µ)Γ(µ)

×

∥u(t)− un−1(t)∥.

(2.15)

This implies

∥An(t)∥ ≤
(1 − µ

B(µ)
+

1
B(µ)Γ(µ)

)
ℓ1∥u(t)− un−1(t)∥.

(2.16)

With help of Eq. (2.13), we obtain

∥An(t)∥ ≤
[1 − µ

B(µ)
+

1
B(µ)Γ(µ)

]n+1
ℓn+1

1 a1. (2.17)

From Eq.(2.17), we see that ∥An(t)∥ → 0 as n → ∞.

By following the same approach and previous steps, we

find that ∥Bn(t)∥ → 0, ∥Cn(t)∥ → 0 as n → ∞ which

complete the proof.

Theorem 2.3. The system Eq. (1.1) has a unique system

of solutions if the following conditions are hold :( (1 − µ)

B(µ)
+

1
B(µ)Γ(µ)

)
ℓ1 − 1 < 0,

( (1 − δ)

B(δ)
+

1
B(δ)Γ(δ)

)
ℓ2 − 1 < 0,

( (1 − ε)

B(ε)
+

1
B(ε)Γ(ε)

)
ℓ3 − 1 < 0.

Proof. We suppose that there is another system of

solutions u∗(t), v∗(t), w∗(t) for the system Eq. (1.1) ,

then we have

∥u(t)− u∗(t)∥ ≤ 1 − µ

B(µ)
∥F1(t, u)− F1(t, u∗)∥+

µ

B(µ)Γ(µ)

∫ t

0
∥F1(s, u)− F1(s, u∗)∥(t − s)µ−1ds

≤ 1 − µ

B(µ)
ℓ1∥u(t)− u∗(t)∥+ 1

B(µ)Γ(µ)
ℓ1∥u(t)− u∗(t)∥.

(2.18)

Making use of Eq. (2.18), we get

∥u(t)− u∗(t)∥
(( (1 − µ)

B(µ)
+

1
B(µ)Γ(µ)

)
ℓ1 − 1

)
≥ 0.

(2.19)
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Eq.Eq. (2.19) is valid if and only if

∥u(t)− u∗(t)∥ = 0.

This implies

u(t) = u∗(t).

Repeating the same procedure with v(t) and w(t), we

obtain

v(t) = v∗(t), w(t) = w∗(t).

This proves that the system Eq. (1.1) has a unique sys-

tem of solutions.

3. HYERS-ULAM STABILITY

Definition 3.1. The integral equations Eq. (2.7) is Hyers-

Ulam stable if there exists non-negative constants ∆i, i ∈
N3

1 satisfying:

For every αi > 0, i ∈ N3
1, if

|u(t)− 1 − µ

B(µ)
F1(t, u)− µ

B(µ)Γ(µ)
×∫ t

0
(t − s)µ−1F1(s, u(s))ds| ≤ α1,

|v(t)− 1 − δ

B(δ)
F2(t, v)− δ

B(δ)Γ(δ)
×∫ t

0
(t − s)δ−1F2(s, v(s))ds| ≤ α2,

|w(t)− 1 − ε

B(ε)
F3(t, w)− ε

B(ε)Γ(ε)
×∫ t

0
(t − s)ε−1F3(s, w(s))ds| ≤ α3,

(3.1)

there exist u∗(t), v∗(t), w∗(t) are satisfying

u∗(t) = +
1 − µ

B(µ)
F1(t, u∗) +

µ

B(µ)Γ(µ)
×∫ t

0
(t − s)µ−1F1(s, u∗(s))ds,

v∗(t) = +
1 − δ

B(δ)
F2(t, v) +

δ

B(δ)Γ(δ)
×∫ t

0
(t − s)δ−1F2(s, v∗(s))ds,

w∗(t) = +
1 − ε

B(ε)
F3(t, w∗) +

ε

B(ε)Γ(ε)
×∫ t

0
(t − s)ε−1F3(s, w∗(s))ds,

(3.2)

such that

∥u(t)− u∗(t)∥ ≤ α1∆1,

∥v(t)− v∗(t)∥ ≤ α2∆2 and

|w(t)− w∗(t)∥ ≤ α3∆3.

(3.3)

Theorem 3.2. The ABC fractional version of Burke-Shaw

system Eq. (1.1) is Hyers-Ulam stable.

Proof. Using Definition 3.1 and Eq.Eq. (2.7), we let

(u(t), v(t), w(t)) to be the fact solution of Eq. (2.7)

and (u∗(t), v∗(t), w∗(t)) to be an approximate solution

satisfying Eq. (3.3). Then, we have

∥u(t)− u∗(t)∥ ≤ 1 − µ

B(µ)
∥F1(t, u)− F1(t, u∗)∥

+
µ

B(µ)Γ(µ)

∫ t

0
∥F1(s, u)− F1(s, u∗)∥(t − s)µ−1ds

≤ 1 − µ

B(µ)
ℓ1∥u(t)− u∗(t)∥+ 1

B(µ)Γ(µ)
ℓ1∥u(t)− u∗(t)∥

=
(1 − µ

B(µ)
+

1
B(µ)Γ(µ)

)
ℓ1∥u(t)− u∗(t)∥.

(3.4)

Similarly, we get

∥v(t)− v∗(t)∥ ≤
(1 − δ

B(δ)
+

1
B(δ)Γ(δ)

)
ℓ2∥v(t)− v∗(t)∥,

∥w(t)− w∗(t)∥ ≤
(1 − ε

B(ε)
+

1
B(ε)Γ(ε)

)
ℓ3∥w(t)− w∗(t)∥.

(3.5)

Hence, by Eq. (3.4), Eq. (3.5) the integral equations

Eq. (2.7) are Hyers-Ulam stable. Thus, the ABC frac-

tional version of BSM Eq. (1.1) is Hyers-Ulam stable.

4. CONCLUSION

In this paper, we have established the existence, unique-

ness, and HUS for a fractional-order BSM using the

ABC-fractional derivative. To achieve these results, we

transformed the fractional-order BSM Eq. (1.1) into an

integral system by applying the properties of the ABC

fractional integral. We demonstrated that the fractional-

order BSM possesses a unique solution and also satis-

fies HUS. This work extends the classical Lorenz system,

which has wide-ranging applications in both physics and

engineering. For future research on the model Eq. (1.1),

we recommend exploring the multiplicity of solutions and

the possibility of non-solutions, utilizing mathematical

techniques such as topological degree theory and the

upper-lower solution method. Additionally, investigating

the numerical solutions of Eq. (1.1) through various nu-

merical methods could provide valuable insights.
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