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Abstract
Based on the mathematical framework of the partially coherent Gaussian Schell model vortex (PCGSMV) beam
and the Huygens-Fresnel integral, we conducted a study to analyze the intensity distribution and depth of focus
(DOF) of the PCGSMV beam as it propagates through a classical axicon. Our numerical results indicate the
influence of factors such as the beam width, spatial degree of coherence, topological charge, and axicon base
angle on the intensity distribution and DOF. In addition, we investigated the relationship between the beam spot
size and propagation distance, as well as the effects of the spatial degree of coherence and propagation distance
on the intensity profile. Our findings highlight the importance of the intensity values along the DOF for various
applications, including the optical trapping and manipulation of micro-particles.
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1. INTRODUCTION

In recent years, partially coherent beams have exhib-
ited unique optical properties and have demonstrated
superiority in various applications, including optical com-
munication, noise reduction in photography, laser nu-
clear fusion, and classical ghost interference [1–4]. Ad-
ditionally, partially coherent beams have outperformed
coherent beams in various applications, such as laser
scanning, optical scattering, atom cooling, and parti-
cle trapping [5–8]. Partially coherent Gaussian Schell-
model beams have been extensively studied both theoret-
ically and experimentally, and their simple functional form
makes them suitable for a variety of applications, includ-
ing free-space optical communication, particle trapping,
and optical scattering. Recently, vortex beams have
been shown to possess specific topological charges,
spiral wavefront structures, and ring shapes with zero
central intensity. Owing to these characteristics, vortex

beams have gained popularity 1owing to their variety of
focal shapes, featuring unique attributes such as beam
shaping, beam rotation, and applications in various fields,
including the manipulation of particles, optical patterning,
optical tweezers, non-linear optics, dark spots, and laser
communication [9–12]. Additionally, the partially coher-
ent Gaussian Schell-model vortex beam represents a
typical type of vortex beam that has been extensively
studied in various media, such as gradient index media,
turbulent plasma atmosphere, free space, oceanic en-
vironments, and biological tissues [13–18]. Lian-zhou
et al. studied the properties of a partially coherent vor-
tex beam focused by an aperture lens [19]. Shukri et
al. studied the intensity distribution of PCGSMV beam
diffracted by axicon. Lensacon has gained interest be-
cause of its versatility and utility in producing various
beam shapes with different focal lengths. Koronkevich et
al. (1993) [20] described the first lens and axicon combi-
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Influence of astigmatic aberration on partially coherent Gaussian-Schell vortex beam focused by lensacon

nation (lensacon) that formed a conical beam distribution
instead of Bessel beam that formed by classical axicon.
Lensacon is characterized by producing a high-quality
focal ring that can be utilized in hole-drilling applications
[21] and other applications, such as surgery for smooth-
ing and ablating corneal tissue [22], and is used as a
corrective element in the optical system of the human
eye [23], laser structuring, micro-machining, optical trap-
ping, optical capture and manipulation of micro-particles,
sensors, and atom guidance [24–29]. The Qusailah et
al. Studied the Intensity distribution of lensacon illumi-
nated by partially coherent Gaussian Schell vortex beam
[30]. Astigmatic aberration causes an optical system to
exhibit different optical properties. The deformation of
the beam structure emerging from the lensacon results
from various beam transmission mechanisms through
the optical system. Because of the significant difference
between systems with and without astigmatic aberration
in the optical wave propagation mechanism, it is of inter-
est to investigate the propagation of a PCGSMV beam in
a lensacon in presence of astigmatic aberration; to the
best of our knowledge, this has not yet been explored.
In despite there are wide studied to investigate the DOF
and spot size of beams, such as apodization of the fo-
cusing system is used to extended DOF adaptive optics
spectral domain optical coherence tomography [31], the
extended depth of field microscope imaging system with
the phase pupil mask [32], dynamic focal shift and ex-
tending depth of focus based on the masking of the
illuminating beam and using an adjustable axicon [33],
power phase apodization study on compensation defus-
ing and chromatic aberration in the imaging system [34]
and Freestyle 3D laser traps [35]. The DOF that shaped
by axicon and perfect lensacon explored by [30, 36]. In
this study, we developed a mathematical model to de-
scribe the propagation of a PCGSMV beam diffracted by
a lensacon with astigmatic aberration and numerically
investigated the effect of astigmatic aberration on the
propagation of a PCGSMV beam through a lensacon and
the spatial correlation length of the beam based on the
Huygens-Fresnel integral. This study aimed to provide a
comprehensive understanding of astigmatic aberration
and its effect on the interaction between lensacons and
beams. We hope that this study will lead to new explo-
ration and innovative applications in scientific research.

2. MATH AND EQUATIONS

The initial field of the Gaussian vortex (GV) beam at the
plane z = 0 in cylindrical coordinates can be written as
[37]

u(ρ′, z = 0) =
√

G0 exp [i m ϕ′] exp

[
− ρ′2

w2

]
, (1)

where G0 is the amplitude constant of the beam, ρ′ =√
x′2 + y′2, w is the waist width of the Gaussian part, ϕ′

is the azimuthal angle, and m is the topological charge.
The cross-spectral density (CSD) of the PCGSMV beam
in the presence of the Schell-correlator at the source
plane is defined as [38]

Win(ρ
′
1, ρ′

2, z = 0) =
〈
u∗(ρ′

1, z = 0) ∗ u(ρ′
2, z = 0)

〉
,
(2)

where ρ′
1 and ρ′

2 are two arbitrary points on the source
plane. By considering the correlation function, which is

expressed as η(ρ′
1 − ρ′

2) = exp
(
− |ρ′

1−ρ′
2|2

2σ2

)
where ρ′

1 =

(ρ′1, ϕ′
1), ρ′

2 = (ρ′2, ϕ′
2) and σ are the spatial correlations

of coherence length. We can rewrite Eq. (2) as follows
[39]

Win(ρ
′
1, ρ′

2, z = 0) =G0 exp
[
−(ρ′1

2
+ ρ′2

2
)

(
1

w2 +
1

2σ2

)]
× exp

[
i m (ϕ′

2 − ϕ′
1)
]

× exp
[

ρ′1 ρ′2 cos(ϕ′
2 − ϕ′

1)

σ2

]
.

(3)
The diffracted field u(ρ, z) at z distance from the source
plan of the PCGSMV beam lensacon in presence of astig-
matic aberration in the Huygens-Fresnel (H-F) integral
approach is written as [40]:

u(ρ, ϕ, z) =
(

−i k
2 π z

)
exp [i k z]

∫ a

0

∫ 2π

0
A(ρ′)

× exp
[

i k
2z

|ρ − ρ′|2
]

ρ′dρ′dϕ′,
(4)

where k = 2 π
λ and k is the wave number with wavelength

λ and A(ρ′) defined as

A(ρ′) = u(ρ′, z = 0)Aaxicon(ρ
′)Alens(ρ

′), (5)

where u(ρ′, z = 0) is the initial field of the PCGSMV
beam, Aaxicon(ρ

′) is the axicon transmission function
defined as [36]

Aaxicon(ρ
′) = exp

[
−i k ρ′ (n − 1) α

]
, (6)

where α is the axicon base angle given by the beam
deviation angle for the propagation axis, which is defined
as [28] θ = arcsin(n sin(α))− α, n is the refractive index
of the axicon, and Alens(ρ

′) is the transmission function
of the lens, which can be obtained as

Alens(ρ
′) = exp

[
−i k ρ′

2
(

µ + 1
4 f

− (µ − 1) cos 2ϕ′

4 f

)]
,

(7)
where f denotes the focal length and µ is the astigmatic
coefficient [28]. By substituting Eq. (1), Eq. (6), and Eq.
(7) into Eq. (5), and substituting Eq. (5) into Eq. (4), we
can evaluate the field diffraction from the lensacon plane
with radial coordinates (ρ′1, ϕ′

1, z = 0) to the image plane
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with radial coordinates (ρ1, ϕ1, z) at z position as follows

u(ρ1, ϕ1, z) =
−i k
2 π z

√
G0 exp

[
i k

(
z +

ρ2
1

2z

)] ∫ a

0

∫ 2π

0
ρ′1

× exp [i m ϕ′
1]

× exp
[

i k
(

µ + 1
4 f

− 1
2 z

)(
ρ′1

2 − ρ′2
2
)]

× exp

[
−

ρ′1
2

w2

]
exp [−i k ρ′1 ((n − 1) α)]

× exp
[−i k ρ1ρ′1 cos(ϕ1 − ϕ′

1)

z

]
× exp

[
i k (µ − 1)ρ′1

2 cos(2ϕ′
1)

4 f

]
dρ′1dϕ′

1.

(8)
For a PCGSMV wave field, the statistical characteristics
and correlation properties of the incident stationary wave
field must be described by the following formula

Wout(ρ
′
1, ρ′

2, z) =
〈
u∗(ρ′1, ϕ′

1, z = 0) ∗ u(ρ′2, ϕ′
2, z = 0)

〉
.

(9)
Substituting Eq. (8) into Eq. (9), the CSD of the
PCGSMV beam can be expressed as

Wout(ρ1, ρ2, z) =
(

k
2π z

)2
G0 exp

[
i k (ρ2

2 − ρ1
2)

2z

]
×
∫ a

0

∫ a

0

∫ 2π

0

∫ 2π

0
(ρ′1 ρ′2)

× exp
[
−(ρ′1

2
+ ρ′2

2
)

(
1

w2 +
1

2σ2

)]
× exp

[
i m (ϕ′

2 − ϕ′
1)
]

× exp
[

ρ′1 ρ′2 cos(ϕ′
2 − ϕ′

1)

σ2

]
× exp [i k (ρ′1 − ρ′2) ((n − 1) α)]

× exp
[

i k
(

µ + 1
4 f

− 1
2 z

)(
ρ′1

2 − ρ′2
2
)]

× exp
[−i k ρ2 ρ′2 cos(ϕ2 − ϕ′

2)

z

]
× exp

[
i k ρ1 ρ′1 cos(ϕ1 − ϕ′

1)

z

]
× exp

[
−i k (µ − 1) ρ′1

2 cos (2ϕ′
1)

4 f

]

× exp

[
i k (µ − 1) ρ′2

2 cos (2ϕ′
2)

4 f

]
×dρ′1dρ′2dϕ′

1dϕ′
2,

(10)
using the Jacobi-Anger expansion that is given by [41]

exp
[

i k ρ′1 ρ1 cos (ϕ1 − ϕ′
1)

z

]
=

∞

∑
l=−∞

(i)l Jl

[
k ρ′1 ρ1

z

]
× exp [ i l (ϕ1 − ϕ′

1],
(11)

where Jl(.) is the first type of Bessel function of order l
and

exp

[
i k (µ − 1) ρ′1

2 cos 2ϕ′
1

4 f

]
=

∞

∑
q=−∞

(i)q

×Jq

[
k (µ − 1) ρ′1

2

4 f

]
× exp [2 i qϕ′

1],

(12)

where Jq(.) is the first type of Bessel function of order q.
By substituting Eq. (12) and Eq. (11) into Eq. (10), we
rewrite Eq. (10) as

Wout(ρ1, ρ2, z) =
(

k
2 π z

)2
G0 exp

[
−i k (ρ1

2 − ρ2
2)

2z

]
×

∞

∑
q=−∞

∞

∑
l=−∞

∫ a

0

∫ a

0

∫ 2π

0

∫ 2π

0
(ρ′1 ρ′2)

× exp
[
−(ρ′1

2
+ ρ′2

2
)

(
1

w2 +
1

2σ2

)]
× exp

[
ρ′1 ρ′2 cos(ϕ′

2 − ϕ′
1)

σ2

]
× exp [i k (ρ′1 − ρ′2)((n − 1) α)]

× exp
[

i k
(

µ + 1
4 f

− 1
2 z

)(
ρ′1

2 − ρ′2
2
)]

×Jl

[
k ρ1 ρ′1

z

]
Jl

[
k ρ2ρ′2

z

]
×Jq

[
k (µ − 1) ρ′1

2

4 f

]
exp

[
i m (ϕ′

2 − ϕ′
1)
]

×Jq

[
k (µ − 1) ρ′2

2

4 f

]
exp

[
−i l (ϕ2 − ϕ′

2)
]

× exp [2 i q (ϕ′
2 − ϕ′

1)] exp
[
i l(ϕ1 − ϕ′

1)
]

× dρ′1 dρ′2 dϕ′
1 dϕ′

2.
(13)

Letting ρ1 = ρ2 = ρ, and ϕ1 = ϕ2 = ϕ, we rewrite Eq.(13)
as

Wout(ρ, z) =
(

k
2πz

)2
G0

∞

∑
q=−∞

∞

∑
l=−∞

∫ a

0

∫ a

0

∫ 2π

0

∫ 2π

0

×(ρ′1 ρ′2) exp
[
−(ρ′1

2
+ ρ′2

2
)

(
1

w2 +
1

2σ2

)]
× exp

[
i (l + m + 2q)(ϕ′

2 − ϕ′
1)
]

× exp
[

ρ′1 ρ′2 cos(ϕ′
2 − ϕ′

1)

σ2

]
× exp [i k (ρ′1 − ρ′2)((n − 1) α)]

× exp
[

i k
(

µ + 1
4 f

− 1
2 z

)(
ρ′1

2 − ρ′2
2
)]

×Jl

[
k ρ ρ′1

z

]
Jl

[
k ρ ρ′2

z

]
×Jq

[
k(µ − 1)ρ′1

2

4 f

]
Jq

[
k (µ − 1) ρ′2

2

4 f

]
×dρ′1 dρ′2 dϕ′

1 dϕ′
2.

(14)
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Using the relation

I(m+l+2q)

[
ρ′1 ρ′2
σ2

]
=

1
4 π2

∫ 2π

0

∫ 2π

0

× exp
[

ρ′1 ρ′2 cos(ϕ′
2 − ϕ′

1)

σ2

]
× exp

[
i (m + l + 2q)(ϕ′

2 − ϕ′
1)
]
dϕ′

1dϕ′
2,

(15)

where Im+l+2q is the modified Bessel function of the first
kind and order (m + l + 2q) and by substituting Eq. (15)
into Eq. (14), we can rewrite Eq. (13) as

Wout(ρ, z) =
(

k
z

)2
G0

∞

∑
q=−∞

∞

∑
l=−∞

∫ a

0

∫ a

0
(ρ′1 ρ′2)

× exp
[
−(ρ′1

2
+ ρ′2

2
)

(
1

w2 +
1

2σ2

)]
× exp

[
i k (ρ′1 − ρ′2) ((n − 1) α)

]
× exp

[
i k
(

µ + 1
4 f

− 1
2 z

)(
ρ′1

2 − ρ′2
2
)]

×Jl

[
k ρ ρ′1

z

]
Jl

[
k ρ ρ′2

z

]
I(m+l+2q)

[
ρ′1 ρ′2
σ2

]
×Jq

[
k (µ − 1) ρ′1

2

4 f

]
Jq

[
k (µ − 1) ρ′2

2

4 f

]
×dρ′1 dρ′2.

(16)
To solve Eq. (16), we use the stationary phase (SP)
method [30]. The total phase function of the lensacon in
presence of astigmatic aberration can be obtained as

F(ρ′) = ((n − 1) α) ρ′ +

(
µ + 1

4 f
− 1

2z

)
ρ′

2. (17)

Applying the stationary phase method, we can express
the stationary point as

ρ′Sp =
−(n − 1) α

µ+1
2 f − 1

z

. (18)

Substituting Eq. (18) into Eq. (16), we can obtain the
numerical model of the CSD of the PCGSMV beam prop-
agation through the lensacon in presence of astigmatic
aberration as

Wout(ρ, z) = G0

 2 π k

z2
(

µ+1
2 f − 1

z

)
 (n − 1) α

( µ+1
2 f − 1

z )

2

× exp

−
 (n − 1) α

( µ+1
2 f − 1

z )

2

(
2

w2 +
1

σ2 )



×
∞

∑
l=−∞

∞

∑
q=−∞

I(m+l+2q)


( (n−1) α

(
µ+1
2 f −

1
z )
)2

σ2



×Jl


k ρ ( (n−1) α

(
µ+1
2 f −

1
z )
)

z


2

× Jq


k (µ − 1) ( (n−1) α

(
µ+1
2 f −

1
z )
)2

4 f


2

(19)

3. DEPTH OF FOCUS

In lensacon, the DOF is [30]

DOF =
w

(n − 1) α + w
f

. (20)

Suppose that for a lens in presence of astigmatic aberra-
tion, we replace the term w

f in Eq. (20) by w (µ+1)
2 f . No-

tably, PCGSMV beams exhibit an effective beam width
we f f [42], which can be expressed as follows

we f f =

(
1

(2w)4 +
1

(2w)2σ2

)− 1
4

. (21)

Replacing w with we f f in Eq. (20), the DOF of the
PCGSMV beam can be obtained as

DOF =

(
1

(2w)4 +
1

(2w)2σ2

)− 1
4

(n − 1) α +
(µ+1)

(
1

(2w)4
+ 1

(2w)2 σ2

)−1
4

2 f

. (22)

4. RESULT AND DISSECTION

Numerical calculations were performed using Mathe-
matica 10. Based on Eq. (19), the parameters of the
PCGSMV beam and lensacon system in the numerical
calculation are f = 100 mm, λ = 632.7 nm, n = 1.5, m =
1, and G0 = 1 watt/mm2. Fig. 1 shows the axial inten-

Figure 1. Axial intensity distribution of the PCGSMV beam fo-
cused by the lensacon without aberration (A) and in presence
of astigmatic aberration (B) for axicon base angle α = 0.02
rad, beam width w = 6 mm, astigmatic coefficient µ = 1.1 and
spatial correlation of coherence length σ = 2 mm.
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sity distribution of the PCGSMV beam at various beam
widths for the lensacon, comparing Fig. 1 (A) and (B).
The observed trend indicates a gradual increase in the
intensity distribution with the beam width w owing to the
energy carried by the beam width, and noticeable dis-
placement of the intensity maximum towards smaller z
values as the beam width w increases in both Figs. 1 (A)
and (B). Additionally, the intensity in Fig. 1 (A) surpasses
that in Fig. 1 (B) because of the influence of astigmatic
aberration. Specifically, for a beam width of w = 20
mm, the intensity produced by the lensacon at z = 110
mm was 150 times greater than that generated by the
lensacon in presence of astigmatic aberration. The con-

Figure 2. The contour plots of the intensity distribution of
the PCGSMV formed by lensacon in presence of astigmatic
aberration coefficient µ = 1.1 and axicon base angle α = 0.02
rad at several propagation distances z, m = 1, w = 6 mm, for
different σ.

tour plot in Fig. 2 illustrates the radial intensity distribution
of the PCGSMV beam diffracted by the lensacon in pres-
ence of astigmatic aberration, considering various values
of σ at different propagation distances. In general, the in-
corporation of a lens in presence of astigmatic aberration
into an axicon system enhances the degree of freedom
of the system. This modification is expected to affect the
behavior of the beam during propagation, as indicated
by Eq. (19). Anticipated changes involve a gradual tran-
sition from a flat-topped profile into half dark hollow with
propagating direction. This behavior is demonstrated
when the spatial coherence is low (σ = 2 mm), indi-
cating the disappearance of the dark spot of the vortex
effect under conditions of low coherence. Conversely, for
higher values of σ, the profile of transforms from a flat-
topped with increasing propagation distance, ultimately
transitioning into a wide-diameter dark hollow spot at a
far distance owing to the effect of astigmatic aberration
and vortex. In addition, oscillations were observed in
the flat-topped profile affected by the astigmatic coeffi-
cient, spatial coherence, and propagation distance, and
the amplitude of these oscillations increased with both
spatial coherence σ and astigmatic aberration coefficient.
In this context, the impact of the vortex profile became

more appearance as σ increase. Fig. 3 depicts the radial

Figure 3. Radial intensity distribution of the PCGSMV focused
by lensacon in presence of astigmatic aberration for propaga-
tion distance z, w = 6 mm, σ = 2 mm, m = 1, and base angle
α = 0.02 rad for different astigmatic aberrations µ.

intensity distribution of the beam concentrated by the
lensacon in presence of astigmatic aberration for various
values of the astigmatic coefficient at different propaga-
tion distances. Notably, the observed trend reveals a
reduction in intensity corresponding to an increase in
the astigmatic coefficient. Additionally, we observed a
gradual transformation of the flat-topped profile to dark
hollow profile as the propagation distance increased. Re-
markably, at long propagation distances, a notable shift
in the beam profile occurs, manifesting as a half dark hol-
low with a wide-diameter dark spot. This transformation
can be attributed to astigmatic aberrations. This analysis
contributes to our understanding of the spatial dynamics
of astigmatic aberrations in beam properties focused by
a lensacon.

Fig. 4 depicts the relationship between the intensity,
σ, and α at various propagation distances. Fig. 4 (A)
highlights that at lower σ values, the constant of the
intensity before σdrop owing to the effect of astigmatic
aberration. σdrop is defined as the point at which the
intensity starts decreasing as a result of the vortex effect.
Subsequently, there is a gradual reduction in intensity as
σ increases, influenced by the vortex, and a decrease
in intensity with an increase in propagation distance,
accompanied by a shift in σdrop towards smaller σ values
with propagation. Fig. 4 (B) illustrates the influence of
the axicon base angle on the intensity. The intensity
increased with the axicon base angle until it reaches
αmax, followed by a decline with α. Geometrically, the
decreases in intensity after αmax can be attributed to
the internal reflection by the axicon. Moreover, there
is an observed shift in αmax towards a larger α with an
increase in the propagation distance. In addition,it can
be observed that the oscillation in all curves owing to the
effect of astigmatic aberration.

Fig. 5 illustrates the effect of the astigmatic coefficient
on the intensity distribution. As depicted in Fig. 5 (A) and
(B), there is a gradual reduction in intensity with an in-
crease in µ, which is attributed to the energy dissipation
resulting from scattering induced by astigmatic aberra-
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Figure 4. The intensity distribution of the PCGSMV beam
focused by lensacon in presence of astigmatic aberration as
a function of (A) spatial degree of coherence σ at various z,
w = 6 mm, α = 0.02 rad, and µ = 1.1 and (B) axicon base
angle α, m = 1 and σ = 2 mm.

Figure 5. Relation Intensity distribution of the PCGSMV beam
as a function of astigmatic coefficient at z = 120 mm, α = 0.02
rad for spatial correlation of the coherence length (A) and
w = 6 mm, and the beam width w (B), and σ=2 mm.

tion. The astigmatism directs the beam to converge at
distinct points along the paraxial axis. The probability of
beam convergence on the optical axis diminishes with
the increasing astigmatism coefficient. Furthermore, in
Fig. 5 (A), it becomes apparent that the intensity im-
proves at a lower σ, transitioning from the blue curve to
the red curve. Conversely, the intensity decreases from
the red curve to the black curve as σ increases. Fig. 6

Figure 6. (A) The depth of focus (DOF) as a function of spatial
degree of coherence length σ for different values of w and (B)
DOF as a function of µ for different w, σ = 2 mm, α = 0.02 rad.
All curves obtained by the Eq. (22).

shows the effect of the beam width and spatial degree
of coherence on the DOF. It can be observed that the
DOF increased as the beam width increase. In Fig. 6
(A), it is observed that the DOF rapidly increases with σ

for low σ values, but the relationship between the DOF
and σ becomes non-linear with increase σ. Furthermore,
It can be observed from Fig. 6 (A) increase the DOF
with increase w . Fig. 6 (B) illustrates the relationship
between depth and the astigmatic coefficient. It is notice-
able that there is a linear decrease in the depth of focus
an the increase in the astigmatic coefficient. It can be
seen from this Fig. that the DOF is 79 mm for µ = 1.1,
w = 6 mm and σ = 2 mm,

5. CONCLUSION
Our study focuses on examining the behavior of a
PCGSMV beam as it passes through an aberrated astig-
matic lensacon. By considering of various parameters
and configurations, we obtain a comprehensive under-
standing of how astigmatic aberrations influence the per-
formance of optical systems. A formula was developed
to depict the relationship between the depth of the focus
and the astigmatic aberration coefficient. The numerical
results provide insights into the influence of astigmatic
aberration on the beam structure, intensity distribution,
and depth of focus. In the presence of astigmatism, we
noted a reduction in the intensity and enlargement of the
spot size. With an increase in the propagation distance,
the beam profile gradually transitioned a flat-topped pro-
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file to dark hollow profile, particularly for low values of
the spatial degree of coherence length. Our numerical
findings revealed a progressive shift in the profile from
flat-topped to a dark hollow profile, as the spatial degree
of coherence increased. For extensive propagation dis-
tances, our results demonstrated a wide dark hollow with
oscillations, attributed to the effect of astigmatic aberra-
tion. Furthermore, the results emphasized the influence
of the beam width, spatial degree of coherence length,
axicon base angle, and astigmatic coefficient on the in-
tensity distribution and depth of focus.
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