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ABSTRACT: Modulated ion acoustic wavepackets have been investigated in a multi-component, dense plasma con-

taining degenerate electrons/positrons, and positive/negative ions. It is assumed that both electrons and positrons fol-

low the Thomas-Fermi statistic, while the positive and negative ions are considered to be classic. Using a multiscale 

perturbation method, the nonlinear Schrödinger equation is derived. The modulational instability conditions have been 

analyzed for modulated ion acoustic waves. The influences of dense plasma parameters on the modulational instability 

and its growth rate have been discussed. The envelope solitons have been discussed as well. The results showed that 

both modulationally unstable domain and stable domain can be found, depending on the plasma parameters. It was 

also found that the width of the envelop solitons is significantly affected by the relevant dense plasma parameters. 

The present results may be useful in understanding the instability criteria of modulated ion acoustic waves which are 

related to both space and laboratory dense plasmas. 

 

1. Introduction 

Dense plasma is a type of plasmas characterized by 

very low thermal temperature and very high number 

density of particles. It can be found in astrophysical 

objects, like white dwarf [1], neutron stars [1, 2] and 

under laboratory conditions in laser fusion [3], ultra-

small electronic devices [4] and micro-pinch experi-

ments [5]. At very dense plasmas, the thermal de-

Broglie's wavelength of plasma particles can be com-

pared to interparticle distance [6, 7]. Thus, the thermal 

energy of these particles becomes much less than the 

Fermi's energy, which means that their thermal pres-

sure can be ignored compared to the Fermi's pressure. 

In such a dense plasma the particles become degener-

ate and the classical statistics are inappropriate to de-

scribe their behavior. In fact, the quantum Thomas–

Fermi statistic may be suitable for describing the dy-

namic behavior of these particles [8]. Over the last few 

years, the dynamics of linear/nonlinear electrostatic 

acoustic mode in a dense plasma become one of the 

major research areas in plasma physics because of its 

major role in understanding not only astrophysical en-

vironments but also laboratory devices [1-5]. Dubinov 

and Dubinova [9] have investigated the ion acoustic 

waves (IAWs) in an ideal plasma its components are 

classical ions and degenerated electrons. The propaga-

tion of arbitrary amplitude IAWs in a dense electron-

positron-ion plasma are investigated by Abdelsalam et 

al. [10]. They considered that electrons and positrons 

are described by Thomas-Fermi statistics. Further, by 

considering Thomas-Fermi distribution of electrons 
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and positrons, Mehdipoor and Esfandyari-Kalejahi 

[11] have investigated the nonlinear propagation of 

small amplitude IAWs in a dense plasma containing 

classical warm ions fluid and degenerate positrons-

electrons. 

On the other side, due to the nonlinearity of the 

plasma medium, the nonlinear wave in such plasma 

may be subject to amplitude modulation [12] and the 

result is modulated wave packets propagating in such 

medium. In fact, the dynamics of such modulated 

modes may be described by a nonlinear Schrödinger 

(NLS) equation, which can be derived from the 

plasma-hydrodynamic equations using a multiscale 

perturbation technique (MSPT) [13]. One of the solu-

tions of the NLS equation have an envelope structure 

called envelope solitons (such as bright envelope soli-

ton and dark envelope soliton) [14, 15]. However, the 

analysis of modulational instability (MI) of modulated 

wave packets is the basic rule for studying the for-

mation of bright or dark envelope solitons in the non-

linear medium, like, plasmas medium [16]. Many 

works have been carried out in the past years to inves-

tigate MI and the formation of the electrostatic enve-

lope solitons in many plasma systems. For example, 

the MI of IAWs in a plasma model composed of posi-

tive and negative ions as well as nonthermal electrons 

has been discussed by Elwakil et al. [17]. They re-

ported that the formation of both dark and bright soli-

tons may be existed in such plasma. The modulated 

electrostatic wave-packets propagating in a dense elec-

tron–positron–ion plasma medium have been exam-

ined by McKerr et al. [18]. They obtained that the MI 

criteria of modulated IAWs are dependence on plasma 

parameters. Further, Chowdhury et al. [19] have inves-

tigated the MI of IAWs in a multi-component plasma 

system containing inertialess nonextensive electrons-

positrons, and heavy negative and light positive ions 

fluid. Ahmed et al. [20] have examined the MI of 

IAWs and they found that the critical wavenumber de-

creases with the increase in the value of wavenumber. 

Banik at al. [21] have considered a multi-component 

plasma system containing warm ions fluid, isothermal 

electrons as well as super-thermal electrons and posi-

trons and examined the MI of IAWs in such plasma 

system. Recently, Jahan at al. [22] have investigated 

the criteria of the existence of the envelope structures 

associated with IAWs in a plasma system having four 

components, namely, isothermal positrons, nonther-

mal, nonextensive distributed electrons, and positive-

negative ions fluid. They found that the dark and bright 

envelope solitons can be present in the system.  

The aim of the present study is to analyze the con-

ditions for the MI of ion acoustic (IA) wavepackets in 

a four-component dense plasma system containing 

positively and negatively charged ion fluids as well as 

degenerate positrons and electrons. Both positrons and 

electrons will be considered in the framework of the 

Thomas-Fermi statistics, while both the negative and 

positive ions will be treated as a classical fluid. Thus, 

the plasma system can be modeled by semiclassical 

hydrodynamics equations.  The MSPT will then be 

used to derive the NLS equation, which describes the 

nonlinear dynamics of IA wavepackets. Furthermore, 

the anticipated occurrence of modulated envelope ex-

citations will be discussed in this paper. 

The organization of the current paper is as follows; 

the basic equations are provided in Sect. 2. Using a 

MSPT, the NLS equation is derived in Sect. 3. The MI 

analysis of IA wavepackets is given in Sect.4. In Sect. 

5, the envelope solitons are discussed. Finally, the con-

clusions are presented in Sect. 6.  

2. Basic equations 

Let's consider a multi-component dense plasma 

system containing negative and positive ions, as well 

as inertialess degenerate positrons and electrons. Both 

positive and negative ions are assumed to be as classi-

cal fluid, while both positrons and electrons are de-

scribed by Thomas-Fermi distribution. Hence, the 

electrons (𝑛𝑒) and positrons (𝑛𝑝) densities are respec-

tively given by [23] 

 

𝑛𝑒 = 𝑛𝑒0 (1 +
𝑒𝜑

𝐸𝐹𝑒
)

3/2

, (1) 

𝑛𝑝 = 𝑛𝑝0 (1 −
𝑒𝜑

𝐸𝐹𝑝
)

3/2

, (2) 

where 𝑛𝑒0(𝑛𝑝0) represents the unperturbed electrons 

(positrons) number density of, 𝜑 denotes the electro-

static potential, 𝑒 is elementary charge. Here,𝐸𝐹𝑗 is the 

Fermi energy of degenerate electrons (𝑗 = 𝑒) or degen-

erate positrons (𝑗 = 𝑝), which related to the equilib-

rium number density 𝑛𝑗0 as  

𝐸𝐹𝑗 = 𝑘𝐵𝑇𝐹𝑗 = (
ℏ2

2𝑚
) (3𝜋2𝑛𝑗0))

2 3⁄
, 

where 𝑚 = 𝑚𝑒 = 𝑚𝑝 is the mass of electron or posi-

tron, 𝑘𝐵is Boltzmann's constant and  𝑇𝐹𝑗 is Fermi tem-

perature of 𝑗−species particle (electrons for𝑗 = 𝑒 and 

positrons for 𝑗 = 𝑝).  ℏ = ℎ 2𝜋⁄ , where ℎ refers to the 

Planck's constant. The dynamics of IAWs in such 

dense plasma can be described by the following equa-

tions 

𝜕𝑛+

𝜕𝑡
+

𝜕

𝜕𝑥
(𝑛+𝑛+) = 0, (3) 

𝜕𝑢+

𝜕𝑡
+ 𝑢+

𝜕𝑢+

𝜕𝑥
= −

𝑍+𝑒

𝑚+

𝜕𝜑

𝜕𝑥
, (4) 
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𝜕𝑛−

𝜕𝑡
+

𝜕

𝜕𝑥
(𝑛−𝑢−) = 0, (4) 

𝜕𝑢−

𝜕𝑡
+ 𝑢−

𝜕𝑢−

𝜕𝑥
=

𝑍−𝑒

𝑚−

𝜕𝜑

𝜕𝑥
, (5) 

𝜕2𝜑

𝜕𝑥2
=

𝑒

𝜖0
(𝑛𝑒 + 𝑍−𝑛− − 𝑛𝑝 − 𝑍+𝑛+), (6) 

where 𝑛+(𝑛−), 𝑢+(𝑢−), and 𝑚+(𝑚−) respectively are 

the number density, fluid velocity and mass of positive 

(negative) ions. Here, 𝑍+(𝑍−) represents the charge 

number on the positive (negative) ion and 𝜖0 refers to 

free space permittivity. For such a plasma, the equilib-

rium condition reeds 𝑍+𝑛+0 + 𝑛𝑝0 = 𝑛𝑒0 + 𝑍−𝑛−0, in 

which 𝑛+0(𝑛−0) denotes the unperturbed number den-

sity of the positive (negative) ions.  

Now, all physical quantities shown in the Eqs. (1)-

(7) can be normalized as: 𝑛̅+ = 𝑛+ 𝑛+0⁄ , 𝑛̅− =
𝑛− 𝑛−0⁄ , 𝑢̅+(𝑢̅−) = 𝑢+(𝑢−) 𝐶+⁄ , and 𝜙 = 𝑒𝜑 𝐸𝐹𝑒⁄ , 

where 𝐶+ = √𝐸𝐹𝑒/𝑚+  is the ion acoustic waves 

speed. The time (𝑡) and space variable (𝑥) are normal-

ized as 𝑡̅ = 𝜔𝑝𝑖𝑡 and x̅ = 𝜔𝑝𝑖 𝑥 𝐶+⁄ , respectively 

where 𝜔𝑝𝑖 = √𝑛+0𝑍+
2𝑒2/𝜖0𝑚+ is the plasma fre-

quency of positive ion. Accordingly, we can rewrite 

the basic equations (1)-(7) in the normalized form:  

𝜕𝑛̅+

𝜕𝑡̅
+

𝜕

𝜕𝑥̅
(𝑛̅+𝑢̅+) = 0, (8) 

𝜕𝑢̅+

𝜕𝑡̅
+ 𝑢+

𝜕𝑢̅+

𝜕𝑥̅
= −

𝜕𝜙

𝜕𝑥̅
, (9) 

𝜕𝑛̅−

𝜕𝑡̅
+

𝜕

𝜕𝑥̅
(𝑛̅−𝑢̅−) = 0, (10) 

𝜕𝑢̅−

𝜕𝑡̅
+ 𝑢̅−

𝜕𝑢̅−

𝜕𝑥̅
= 𝜇

𝜕𝜙

𝜕𝑥̅
, (11) 

              
𝜕2𝜙 

𝜕𝑥̅2
= 𝛽𝑛̅− − 𝑛̅+ + 𝛼𝑒(1 + 𝜙)3 2⁄   

− 𝛼𝑝(1 − 𝜎𝜙)3 2⁄ , (12) 

where 𝜇 = 𝑍− 𝑚+ 𝑍+𝑚−⁄  is the mass ratio of positive-

to-negative ion, 𝛼𝑒 = 𝑛𝑒0 𝑍+𝑛+0⁄ , is the number den-

sity ratio of electron-to-positive ion,𝛼𝑝 = 𝑛𝑝0 𝑍+𝑛+0⁄  

is the number  density ratio of positron-to-positive ion, 

𝛽 = 𝑍−𝑛−0 𝑍+𝑛+0⁄   is the number  density  ratio of 

positive-to-negative ion and 𝜎 = 𝑇𝐹𝑒 𝑇𝐹𝑝⁄ = 𝑓2 3⁄ , 

𝑓 = 𝑛𝑒0 𝑛𝑝0⁄ . We assume that the normalized poten-

tial 𝜙 is small, such that 𝜙 ≪ 1. Thus, we can expand 

the functions appearing in the right-hand side of Eq. 

(12). With that expansion, Eq. (12) simplifies to 

     
𝜕2𝜙 

𝜕𝑥̅2
+ 𝑛+ − 𝛽𝑛− = 𝑠0 +  𝑠1𝜙  

                                     +𝑠2𝜙2 + 𝑠3𝜙3 + ⋯, (13) 

where the term on the right-hand side of the above 

equation represents the contribution of degenerate 

electrons and positrons, in which the dimensionless pa-

rameters 𝑠0, 𝑠1, 𝑠2 and 𝑠3 are defined as: 

𝑠0 = 𝛼𝑒 − 𝛼𝑝,      

𝑠1 = 3(𝛼𝑒 + 𝜎𝛼𝑝) 2⁄ ,      

𝑠2 = 3(𝛼𝑒 − 𝜎2𝛼𝑝) 8⁄ , 
and  

𝑠3 = −(𝛼𝑒 + 𝜎3𝛼𝑝) 16⁄ . 

3. Nonlinear Schrödinger equation  

In order to investigate the MI of IA wavepackts in 

such dense plasma, we go first to derive the NLS equa-

tion employing a MSPT. Accordingly, the following 

stretched space and time variables are considered  

𝜉 = 𝜖(𝑥̅ − 𝑉𝑔𝑡̅), 𝜏 = 𝜖2𝑡̅, (14) 

where the parameter є is a minor real parameter and 

𝑉𝑔 reflects the dimensionless group velocity of IA 

wavepackt, which will be determined later on. The de-

pendent variables i.e.,𝑛̅+, 𝑛̅−, 𝑢̅+, 𝑢̅− and 𝜑 can be ex-

panded as 

𝐹(𝑥̅, 𝑡̅)

= 𝐹0 + ∑ 𝜖𝑛

∞

𝑛=1

∑ 𝐹𝑙
(𝑛)

(𝜉 , 𝜏)

𝑛

𝑙=−𝑛

exp(𝑖𝑙Υ), 
(15) 

were 

𝐹 = [𝑛̅+, 𝑢̅+, 𝑛̅−, 𝑢̅−, 𝜙]𝑇 , 

𝐹𝑙
(𝑛)

= [𝑛+𝑙
(𝑛)

, 𝑢+𝑙
(𝑛)

, 𝑛−𝑙
(𝑛)

, 𝑢−𝑙
(𝑛)

, 𝜙𝑙
(𝑛)

]
𝑇

,    

and 

𝐹0 = [1, 0, 1, 0, 0]𝑇 , 

where Υ = 𝑘𝑥̅ − 𝜔𝑡̅, 𝑘 and 𝜔 are the real variables 

representing the wavnumber and angular frequency of 

the carrier wave, respectively. Since the variables  𝑛̅+, 

𝑢̅+, 𝑛̅−, 𝑢̅−and 𝜙 are real, the variables 𝑛+𝑙
(𝑛)

, 𝑢+𝑙
(𝑛)

, 

𝑛−𝑙
(𝑛)

, 𝑢−𝑙
(𝑛)

 and 𝜙𝑙
(𝑛)

 must be satisfy the reality condi-

tion 𝐹𝑙
(𝑛)

= 𝐹−𝑙
∗(𝑛)

 where the asterisk denotes the com-

plex conjugate. From the Eqs. (14) and (15), the oper-

ators 𝜕 𝜕𝑡̅⁄   and 𝜕 𝜕𝑥̅⁄   appearing in Eqs. (8)-(12) are 

given as 

𝜕

𝜕𝑡̅
→

𝜕

𝜕𝑡̅
− 𝜖𝑉𝑔

𝜕

𝜕𝜉
+ 𝜖2

𝜕

𝜕𝜏
, (16a) 

𝜕

𝜕𝑥̅
→

𝜕

𝜕𝑥̅
+ 𝜖

𝜕

𝜕𝜉
. (16b) 
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Inserting the Eqs. (15) and (16) into Eqs. (8)-(13) and 

collecting the terms in different powers of 𝜖 parame-

ter. The equations of the first order of 𝜖(𝑛 = 1) with 

first order harmonic (𝑙 = 1) lead to the following re-

lations   

𝑛+1
(1)

=
𝑘2

𝜔2
𝜑1

(1)
,          𝑢+1

(1)
=

𝑘

𝜔
𝜑1

(1)
, (17) 

𝑛−1
(1)

= −𝜇
𝑘2

𝜔2
𝜑1

(1)
,      𝑢−1

(1)
= −

𝜇𝑘

𝜔
𝜑1

(1)
, (18) 

with the following dispersion relation  

𝜔 = 𝑘√
1 + 𝜇𝛽

𝑘2 + 𝑠1
. 

(19) 

Equation (19) indicates the angular frequency 𝜔 of 

IAW is a real quantity, which reflects the stability of  

the linear waves in the current plasma system. Here, 

we investigate the effects of plasma parameters on 

𝜔.Figure 1(a) depicts the changes of carrier wave fre-

quency 𝜔 versus carrier wavenumber 𝑘 with varying 

mass ratio of positive-to-negative ion (via 𝜇). It is 

clear from this figure that the wave frequency𝜔 in-

creases with increasing  𝜇.  For large values of 𝑘, the 

wave frequency 𝜔 approaches unity. Figures 1(b) and 

(c) show how the wave frequency 𝜔varying with 

wavenumber𝑘 for different values of positron concen-

tration, via 𝛼𝑝(= 𝑛𝑝0 𝑍+𝑛+0⁄ ) [Fig. 1(b)], and for dif-

ferent values of the electron concentration, via 

𝛼𝑒(= 𝑛𝑒0 𝑍+𝑛+0⁄ ) [Fig. 1(c)]. We notice from Fig. 

1(b) that the wave frequency 𝜔 decreases with 𝛼𝑝. The 

change in 𝜔 tend to be weaker for smaller and larger 

𝑘-value. On the other hand, Fig. 1(c) shows that the 

wave frequency 𝜔 decreases with the increase of the 

𝛼𝑒, and the effect is weaker for small values of 𝑘. 

Figure 1: The changes of wave frequency 𝜔 versus wavenumber 𝑘. (a) plotted for 𝜇 different, with 𝛼𝑒 = 0.8, 𝛼𝑝 = 0.3;  (b) plotted for 𝛼𝑝 

different, with 𝜇 = 0.1, 𝛼𝑒 = 0.8;  and  (c) plotted for 𝛼𝑒different, for 𝜇 = 0.1, and 𝛼𝑝 = 0.3. 

The equations of the second-order in 𝜖 (𝑛 = 2) along 

with the first harmonics (𝑙 = 1) yields the following 

relations 

𝑛+1
(2)

=
𝑘2

𝜔2
𝜑1

(2)
+  

2𝑖𝑘(𝑘𝑉𝑔 − 𝜔)

𝜔3

𝜕𝜑1
(1)

𝜕𝜉
, (20) 

𝑢+1
(2)

=
𝑘

𝜔
𝜑1

(2)
+  

𝑖(𝑘𝑉𝑔 − 𝜔)

𝜔2

𝜕𝜑1
(1)

𝜕𝜉
, (21) 

𝑛−1
(2)

= −
𝜇𝑘2

𝜔2
𝜑1

(2)
−

2𝑖𝑘𝜇(𝑘𝑉𝑔 − 𝜔)

𝜔3

𝜕𝜑1
(1)

𝜕𝜉
, (22) 

𝑢−1
(2)

= −
𝜇𝑘

𝜔
𝜑1

(2)
−

𝑖𝜇(𝑘𝑉𝑔 − 𝜔)

𝜔2

𝜕𝜑1
(1)

𝜕𝜉
, (23) 
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with the following normalized group velocity  

𝑉𝑔 = (
𝜔

𝑘
) (1 −

ω2

1 + 𝜇𝛽
). (24) 

Figure 2(a) exhibits the dependence of the group ve-

locity (𝑉𝑔) of IA wavepacket on both wave-number𝑘 

and mass ratio𝜇. From the figure, we notice that with 

an increase in 𝑘,  the group velocity 𝑉𝑔 decreases. As 

the value of 𝜇 increases, the 𝑉𝑔 increases as well, and 

the change turns to be weaker for large 𝑘 values.  Fig-

ures 2(b) and 2(c) show the variation of  𝑉𝑔 against 𝑘 

for different values of 𝛼𝑝 and 𝛼𝑒 respectively. It is 

noted that, the group velocity𝑉𝑔 decreases with the in-

crease in 𝑘. For lower values of 𝑘 ≤ 0.9, the group ve-

locity 𝑉𝑔 decrease with an increment of both 𝛼𝑝 and 𝛼𝑒 

and for larger values of 𝑘 > 0.9, the group velocity𝑉𝑔 

turns to increase by increasing 𝛼𝑝 or 𝛼𝑒. 

 

 

Figure 2: The changes of group velocity 𝑉𝑔 versus wavenumber 𝑘. (a) plotted for 𝜇 different, with 𝛼𝑒 = 0.8, 𝛼𝑝 = 0.3;  (b) plotted 

for 𝛼𝑝 different, with 𝜇 = 0.1, 𝛼𝑒 = 0.8;  and  (c) plotted for 𝛼𝑒different, with  𝜇 = 0.1, and 𝛼𝑒 = 0.8. 

 

 

From the equations of the second-order (𝑛 = 2) with 

second harmonics (𝑙 = 2), we get the expressions of 

𝑛+2
(2)

 , 𝑛+2
(2)

, 𝑛−2
(2)

, 𝑛−2
(2)

 and 𝜙2
(2)

 in terms of (𝜑1
(1)

)
 2

as 

 

𝑛+2
(2)

= 𝐶+𝑛2
(2)

(𝜑1
(1)

)
 2

,         𝑢+2
(2)

= 𝐶+𝑢2
(2)

(𝜑1
(1)

)
 2

, (25) 

𝑛−2
(2)

= 𝐶−𝑛2
(2)

(𝜑1
(1)

)
 2

, 𝑢−2
(1)

= 𝐶−𝑢2
(2)

(𝜑1
(1)

)
 2

, (26) 

𝜙2
(2)

= 𝐶𝜙2
(2)

(𝜑1
(1)

)
 2

, (27) 

 

where 

𝐶+𝑛2
(2)

=
𝑘2

2𝜔4
(3𝑘2 + 2𝜔2𝐶𝜙2

(2)
),   

𝐶+𝑢2
(2)

=
𝑘

2𝜔3
(𝑘2 + 2𝜔2𝐶𝜙2

(2)
), 

𝐶−𝑛2
(2)

=
𝜇𝑘2

2𝜔4
(3𝜇𝑘2 − 2𝜔2𝐶𝜙2

(2)
), 

𝐶−𝑢2
(2)

=
𝜇𝑘

2𝜔3
(𝜇𝑘2 − 2𝜔2𝐶𝜙2

(2)
), 

𝐶𝜑2
(2)

=
3𝑘4(𝜇2𝛽 − 1) + 2𝑠2𝜔4

2 𝜔2[𝑘2(1 + 𝜇𝛽 −  4𝜔2) −  𝑠1𝜔2]
. 

From the third-order (𝑛 = 3) and second-order 

(𝑛 = 2) equations with zero harmonic (𝑙 = 0), the ex-

pressions of 𝑛+0
(2)

 , 𝑛+0
(2)

, 𝑛−0
(2)

, 𝑛−0
(2)

 and 𝜙0
(2)

 are ob-

tained in terms of |𝜑1
(1)

|
 2

= 𝜑1
(1)

𝜑1
∗(1)

 as  

𝑛+0
(2)

= 𝐶+𝑛0
(2)

|𝜑1
(1)

|
 2

,      𝑢+0
(2)

= 𝐶+𝑢0
(2)

|𝜑1
(1)

|
 2

, (28) 
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𝑛−0
(2)

= 𝐶−𝑛0
(2)

|𝜑1
(1)

|
 2

,       𝑢−0
(1)

= 𝐶−𝑢0
(2)

|𝜑1
(1)

|
 2

, (29) 

𝜙0
(2)

= 𝐶𝜙0
(2)

|𝜑1
(1)

|
 2

, (30) 

where 

𝐶+𝑛0
(2)

=
𝑘2(𝜔 + 2𝑘𝑉𝑔) + 𝜔3𝐶𝜙0

(2)

𝑉𝑔
2𝜔3

, 

𝐶+𝑢0
(2)

=
𝜔2𝐶𝜙0

(2)
+ 𝑘2

𝑉𝑔𝜔2
, 

𝐶−𝑛0
(2)

=
𝜇2𝑘2(𝜔 + 2𝑘𝑉𝑔) − 𝜇𝜔3𝐶𝜙0

(2)

𝜔3𝑉𝑔
2 , 

𝐶−𝑢0
(2)

=
𝜇2𝑘2 − 𝜇𝜔2𝐶𝜙0

(2)

𝜔2𝑉𝑔
, 

𝐶𝜑0
(2)

=
𝑘2(𝜔 + 2𝑘 𝑉𝑔)(𝜇2𝛽 − 1) + 2𝑠2𝑉𝑔

2𝜔3

𝜔3(1 +  𝜇𝛽 − 𝑠1𝑉𝑔
2)

. 

Finally, using the Eqs. (17)-(30) into the third-order 

(𝑛 = 3) equations with first harmonic (𝑙 = 1), we ob-

tain the following NLS equation:  

𝑖
𝜕Φ

𝜕𝜏
+ 𝑃

𝜕2Φ

𝜕𝜉2
+ 𝑄|Φ|2Φ = 0, (31) 

where we set Φ = 𝜙1
(1)

 for simplicity. The nonlinear 

coefficient 𝑄 is deduced to be 

𝑄 =
𝜔3 

2𝑘2(𝛽𝜇 + 1)
[2 𝑠2 (𝐶𝜑2

(2)
+ 𝐶𝜑0

(2)
)

−
2 𝑘3

𝜔3 
(𝐶+𝑢2

(2)
+ 𝐶+𝑢0

(2)
)

−  
𝑘2

𝜔2 
(𝐶+𝑛0

(2)
+ 𝐶+𝑛2

(2)
)

−  
 2𝛽𝜇𝑘3

𝜔3 
(𝐶−𝑢0

(2)
+ 𝐶−𝑢2

(2)
)

−
𝛽𝜇𝑘2

𝜔2 
(𝐶−𝑛0

(2)
+ 𝐶−𝑛2

(2)
)

+ 3𝑠3], 
(32) 

while the dispersion coefficient 𝑃 given as 

𝑃 =
3𝑉𝑔(𝑘𝑉𝑔 − 𝜔)

2𝜔𝑘
. (33) 

 

4. Analysis of modulational instability 

To Investigate the MI of IA wavepackets, we con-

sider the following harmonic wave solution of NLS 

equation (31) [12] 

Φ = 𝜑̃ exp(𝑖𝑄𝜑0
2𝜏) (31) 

where 𝜑̃ = 𝜑0 + 𝜑1 with𝜑0 is a real constant ampli-

tude and 𝜑1 is a small perturbation amplitude where 
|𝜑1| ≪ 𝜑0. Now, using Eq. (34) into Eq. (31) and lin-

earizing we get the following equation 

𝑖
𝜕𝜑1

𝜕𝜏
+ 𝑃

𝜕2𝜑1

𝜕𝜉2
+ 𝑄𝜑0

2(𝜑1 + 𝜑1
∗) = 0, (35) 

where 𝜑1
∗ denotes the complex conjugate of 𝜑1. Now, 

we consider the solution of Eq. (35) in the form 

𝜑1(𝜉, 𝜏) = [𝐹(𝜉, 𝜏) + 𝑖𝐺(𝜉, 𝜏)] exp(𝑖Ψ), (36) 

where Ψ = Κ𝜉 − Ω𝜏 is the modulation phase with 𝐾 

and Ωare respectively the modulation wavenumber and 

the modulation frequency of IA wavepackets. Insert-

ing this solution into Eq. (35), and separating the im-

aginary and real parts, we get two coupled equations, 

which allow taking the following matrix form 

(
𝑖Ω 𝑃Κ2

2𝑄𝜙0
2 − 𝑃Κ2 𝑖Ω

) (
𝐹
𝐺

) = (
0
0

). (37) 

Clearly, the determinant of the above matrix must 

be zero, which leads to the following dispersion rela-

tion 

Ω2 = Κ4 (𝑃2 − 2𝑃𝑄
𝜙0

2

Κ2). (38) 

Equation (38) is the modulated dispersion relation for 

IA wavepackets. As it's noted from Eq. (38) thatthe 

modulated IA wavepackets will be stable for all values 

of 𝐾 when the 𝑃𝑄 product is negative value(i.e., when 

𝑃𝑄 < 0). On the other hand, when the 𝑃𝑄 product is 

positive value, the instability occurs in the region in 

which the values of the modulational wavenumber Κ 

are below a critical value Κ𝑐𝑟 = 𝜙0√2 𝑄 𝑃⁄ . Other-

wise, when 𝑃𝑄 = 0, there is a critical value of carrier 

wavenumber 𝑘(= 𝑘𝑐𝑟) separating stable (𝑃𝑄 < 0), 

and unstable (𝑃𝑄 > 0) regions for IA wavepack-

ets.Therefore, we will investigate how the critical 

wavenumber 𝑘𝑐𝑟 depends on the plasma parameters 

(i.e., 𝜇, 𝛼𝑒 and 𝛼𝑝). Figure 3 shows the contour plot of 

the 𝑃𝑄 product, in the space (𝜇, 𝑘). Clearly, this figure 

indicates that the value of the critical wavenumber 𝑘𝑐𝑟 

decreases as 𝜇increases. This means that the instability 

region shifts to lower wavenumber as the values of 𝜇 
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increases.The dependence of 𝑘𝑐𝑟on the electrons and 

positrons concentrations (via the parameters 𝛼𝑒 

and𝛼𝑝) are depicted in the Figs. 4 and 5 respectively. 

 
Figure 3: Contour plot of 𝑃𝑄 product is depicted against 𝑘 and𝜇, 

along with 𝛼𝑝 = 0.3, and 𝛼𝑒 = 0.7. 

 

 
Figure 4:Contour plot of 𝑃𝑄 product is depicted 𝑘 and 𝛼𝑒, along 

with 𝜇 = 0.5 and  𝛼𝑝 = 0.3. 

 

 
Figure 5: Contour plot of 𝑃𝑄 product is depicted against 𝑘 and 𝛼𝑝, 

along with  𝜇 = 0.5, and 𝛼𝑒 = 0.7. 

 

One can notice from Fig. 4 that the effect of electrons 

concentration𝛼𝑒is to narrow the wavenumber domain 

for the onset of instability i.e., the stability region shifts 

to higher wavenumber with the increase of 𝛼𝑒.As a re-

sult of the increase in the value of 𝛼𝑝, the value of the 

critical wavenumber 𝑘𝑐𝑟decreases (see Fig. 5). This 

means that at the higher values of 𝛼𝑝, the instability 

domain occurred at lower values of carrier wave-

number 𝑘. 

Furthermore, in the unstable region, the modula-

tional instability growth rate (MIGR) of the IA wave-

packets can be obtained from Eq. (38) in the form 

η
g

= |𝑃|Κ2√Κ𝑐𝑟
2 Κ2⁄ − 1. (39) 

Lt's noticed that, forΚ = Κ𝑐𝑟 √2⁄ , the MIG has a max-

imum value ηgm, given as ηgm = |𝑄|𝜙0
2.  Figures 6 

and 7 show how the MIGRηgchanges with the modu-

lational wavenumber 𝐾 for different values of 𝜇 and 

𝛼𝑝, respectively. It's found from Figs. 6 and 7 that the 

magnitudes of MIGR (ηg) are larger for the larger val-

ues of 𝜇 and 𝛼𝑝. Also, is to enlarge the maximum value 

of  ηg. 

 

 
Figure 6: The variation of MIGR (ηg)  against 𝐾 for different val-

ues of 𝜇 with 𝛼𝑒 = 0.7, and 𝛼𝑝 = 0.3. 

 

 
Figure 7: The variation of MIGR (𝜂𝑔) against 𝐾 for different val-

ues of 𝛼𝑝  with 𝛼𝑒 = 0.7, and 𝜇 = 0.5. 

https://jpurnals.su.edu.ye/jast


 

                               

Mahmood Ahmed. Hassan. Khaled et.al 

 

90  | 2023| 1 | No. 1 Vol.  JAST 

 

5. Envelope IA solitons 

Generally, the NLS equation (31) can have space-

localized solutions of envelope-soliton type, which 

may be arisen due to the effects of nonlinearity and 

dispersion. Focusing on two types of envelope solitons 

may be existed in the current plasma system, namely, 

bright-type envelope solitons (pulse) and dark-type en-

velope solitons (holes), depending on the sign of the 

𝑃𝑄 product. The expressions for envelope solitons can 

be found by setting the space-localized solutions of Eq. 

(31) on the form [14] 

Φ(𝜉, 𝜏) = √𝜓(𝜉, 𝜏)  exp [
𝑖

2𝑃
Θ(𝜉, 𝜏)], (40) 

where𝜓(𝜉, 𝜏) reflects the envelope profile and Θ(𝜉, 𝜏) 

represents the nonlinear phase shift whose expressions 

can be determined by inserting the above equation into 

Eq. (31)depending on the sign of the 𝑃𝑄 product. 

5.1 Bright envelope solitons 

If the𝑃𝑄 product is positive value, the solution (40) 

correspond to bright envelope soliton (or bright pulse), 

in which the envelope form 𝜓 and nonlinear phase shift 

Θ are given by [14] 

         𝜓 = 𝜓0 sech2 (
𝜉 − 𝑈𝜏

𝐿
),   

Θ = 𝑈𝜉 − (Ω0 +
𝑈2

2
) 𝜏, 

(41) 

 

 
 
Figure 8: The profile of the bright envelop soliton at 𝜏 = 0 with 

𝛼𝑒 = 0.7, 𝛼𝑝 = 0.3, 𝜇 = 0.3, 𝜓0 = 0.005 , 𝑘 = 1, Ω0 = 0.25, and 

𝑈 = 0.5 

 

where 𝜓0 indicates the pulse amplitude, Ω0 is the os-

cillating frequency at rest, 𝑈 is the travelling speed of 

the localized pulse and 𝐿 is pulse width. It should be 

mentioned here that the pulse width 𝐿 is proportional 

to the maximumamplitude of bright soliton √𝜓0, that 

can be written as𝐿 = √2𝑃 𝑄𝜓0⁄ . For positive values 

of𝑃𝑄-product, the MI of the IAWs associated with un-

stable domain leads to generate a bright pulse with fast 

oscillations inside the packet as shown in Fig. 8. As 

can be seen from the Fig. 8, when 𝜉 = 0, the pulse 

height is maximum value, and decreases with an in-

crease of the positive or negative values of 𝜉. When 

𝜉 → ±∞, the pulse tends to zero. Additionally, 

Fig.9shows the time evolution of the bright enve-

lope soliton, while the Fig. 10 shows the bright en-

velope soliton pulse for different values of𝜇. As 

shown from Fig. 10, the pulse width decreases 

with the increase of 𝜇. 

 

 

Figure 9: The profiles of the bright envelop solitons at successive 

times with 𝑈 = 1. The other parameters are the same as in Fig. 8. 

 

 

Figure 10:  The variation of |Φ| versus 𝜉, for 𝜇 different when 

𝑃𝑄 > 0, and with𝛼𝑒 = 0.7, 𝛼𝑝 = 0.3 , 𝜇 = 0.3, 𝜓0 = 0.005 , 𝑘 =

1, Ω0 = 0.25, and 𝑈 = 0.5. 
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5.2 Dark envelope solitons 

The dark envelope solitons (or dark pulses) can be 

formed in the system when the values of 𝑃𝑄 produc-

tare negative (𝑃𝑄 < 0). In this case the real func-

tions𝜓, and Θ are given by [14] 
 

       𝜓 = 𝜓1 tanh2 (
𝜉 − 𝑈𝜏

𝐿1
) , 

Θ = 𝑈𝜉 + (2𝑃𝑄𝜓1 −
𝑈2

2
) 𝜏, (42) 

 

where the dark pulse width 𝐿1 depends on the maxi-

mum amplitude√𝜓1 via 𝐿1 = √2|𝑃 𝑄𝜓1⁄ |. 
 

 
Figure 11: The profile of the dark envelope soliton at 𝜏 = 0 with 

𝛼𝑒 = 0.7, 𝛼𝑝 = 0.3, 𝜇 = 0.3, 𝜓1 = 0.005, 𝑘 = 0.3, and 𝑈 = 0.5. 

 

 

Figure 12: The profiles of the dark envelope solitons at successive 

times with 𝑈 = 1. The other parameters are the same as in Fig. 11. 

 

The profile of the dark envelope soliton with 𝜏 = 0, 

and 𝑘 = 0.3 can be observed in Fig. 11. It's noted that 

the propagation of dark envelope soliton is corre-

sponded to a propagating a void (hole) amidst a con-

stant region where we notice that |Φ| decreases from a 

finite value at infinity and then returns to its state. Ad-

dition, the time evolution of dark envelope soliton is 

shown in Fig. 12. Further, Fig. 13 shows how the width 

of the dark envelope solitons is influenced by mass ra-

tio 𝜇. From Fig. 13 one can, be see that the width of 

dark envelope soliton increases with the increase of 𝜇. 

 

 
Figure 13: The variation of |Φ| versus 𝜉 for 𝜇 different, when 

𝑃𝑄 < 0, and with 𝛼𝑒 = 0.7, 𝛼𝑝 = 0.3 , 𝜓1 = 0.005 , 𝑘 = 0.3 and 

𝑈 = 0.5. 

6. Conclusions  

In this paper, the modulated IA wavepackets are inves-

tigated in a multicomponent dense plasma model con-

taining inertialless degenerate electrons and positrons 

as well as negative and positive ions. The electrons and 

positrons have been considered to be follow Thomas–

Fermi distribution, while the ions (positive or nega-

tive) were assumed to be inertial and cold. The NLS 

equation is derived employing a MSPT. Both the mod-

ulationally stable and unstable domains can be ob-

served in this model. The effects of dense plasma pa-

rameters, i.e., the electrons concentration (𝛼𝑒), posi-

trons concentration (𝛼𝑝) and mass ratio of positive-to-

negative ion (𝜇) on the conditions for the modulational 

instability to occur are discussed. It's found that the in-

stability domains for the wave packets are significantly 

changed by these parameters. The analysis also shows 

that the value of MIGR (ηg) decreases with increases 

of both 𝜇 and 𝛼𝑝 for fixed other parameters. Moreover, 

the expressions of the bright and dark envelope soli-

tons are obtained. It's found that the width of the bright 

(dark) envelope solitons decreases (increases) with the 

increase in the mass ratio (𝜇), while their amplitudes 

remain unchanged. Finally, we expect that our results 

may be useful for understanding the nonlinear phe-

nomena in compact astrophysical objects as well as in 

dense plasmas resulting from ultra-intense laser 

pulses. 
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